Skip to main content
Log in

The generalized cusp in ABJ(M) \( \mathcal{N} \) = 6 Super Chern-Simons theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a generalized cusped Wilson loop operator in \( \mathcal{N} \) = 6 super Chern-Simons-matter theories which is locally invariant under half of the supercharges. It depends on two parameters and interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines, representing a natural generalization of the quark-antiquark potential in ABJ(M) theories. For particular choices of the parameters we obtain 1/6 BPS configurations that, mapped on S 2 by a conformal transformation, realize a three-dimensional analogue of the wedge DGRT Wilson loop of \( \mathcal{N} \) = 4. The cusp couples, in addition to the gauge and scalar fields of the theory, also to the fermions in the bifundamental representation of the U(N) × U(M) gauge group and its expectation value is expressed as the holonomy of a suitable super-connection. We discuss the definition of these observables in terms of traces and the role of the boundary conditions of fermions along the loop. We perform a complete two-loop analysis, obtaining an explicit result for the generalized cusp at the second non-trivial order, from which we read off the interaction potential between heavy 1/2 BPS particles in the ABJ(M) model. Our results open the possibility to explore in the three-dimensional case the connection between localization properties and integrability, recently advocated in D = 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].

    Article  ADS  Google Scholar 

  2. D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Drukker, Integrable Wilson loops, arXiv:1203.1617 [INSPIRE].

  5. D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

    ADS  Google Scholar 

  7. G. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].

    ADS  Google Scholar 

  8. G. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Dymarsky and V. Pestun, Supersymmetric Wilson loops in N = 4 SYM and pure spinors, JHEP 04 (2010) 115 [arXiv:0911.1841] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. V. Cardinali, L. Griguolo and D. Seminara, Impure Aspects of Supersymmetric Wilson Loops, JHEP 06 (2012) 167 [arXiv:1202.6393] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Erickson, G. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

    ADS  Google Scholar 

  20. G. Korchemsky and A. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Young, BPS Wilson Loops on S 2 at Higher Loops, JHEP 05 (2008) 077 [arXiv:0804.4098] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Bassetto and L. Griguolo, Two-dimensional QCD, instanton contributions and the perturbative Wu-Mandelstam-Leibbrandt prescription, Phys. Lett. B 443 (1998) 325 [hep-th/9806037] [INSPIRE].

    ADS  Google Scholar 

  26. V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Bassetto et al., Correlators of supersymmetric Wilson-loops, protected operators and matrix models in N = 4 SYM, JHEP 08 (2009) 061 [arXiv:0905.1943] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Bassetto et al., Correlators of supersymmetric Wilson loops at weak and strong coupling, JHEP 03 (2010) 038 [arXiv:0912.5440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S 2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].

    Article  ADS  Google Scholar 

  31. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. J.M. Henn, J. Plefka and K. Wiegandt, Light-like polygonal Wilson loops in 3d

  34. Chern-Simons and ABJM theory, JHEP 08 (2010) 032 [Erratum ibid. 1111 (2011) 053] [arXiv:1004.0226] [INSPIRE].

  35. W.-M. Chen and Y.-t. Huang, Dualities for Loop Amplitudes of N = 6 Chern-Simons Matter Theory, JHEP 11 (2011) 057 [arXiv:1107.2710] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, Scattering Amplitudes/Wilson Loop Duality In ABJM Theory, JHEP 01 (2012) 056 [arXiv:1107.3139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, Scattering in ABJ theories, JHEP 12 (2011) 073 [arXiv:1110.0738] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. V. Forini, V.G.M. Puletti and O. Ohlsson Sax, Generalized cusp in AdS 4 × CP 3 and more one-loop results from semiclassical strings, J. Phys. A 46 (2013) 115402 [arXiv:1204.3302] [INSPIRE].

    ADS  Google Scholar 

  43. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].

    Article  ADS  Google Scholar 

  45. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].

    Article  Google Scholar 

  48. K.-M. Lee and S. Lee, 1/2-BPS Wilson Loops and Vortices in ABJM Model, JHEP 09 (2010) 004 [arXiv:1006.5589] [INSPIRE].

    Article  ADS  Google Scholar 

  49. V. Dotsenko and S. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. J. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. J. Frenkel and J. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Aoyama, The renormalization of the string operator in QCD, Nucl. Phys. B 194 (1982) 513 [INSPIRE].

    Article  ADS  Google Scholar 

  53. N. Craigie and H. Dorn, On the renormalization and short distance properties of hadronic operators in QCD, Nucl. Phys. B 185 (1981) 204 [INSPIRE].

    Article  ADS  Google Scholar 

  54. H. Dorn and E. Wieczorek, Renormalization and short distance properties of string type equations in QCD, Z. Phys. C 9 (1981) 49 [Erratum ibid. C 9 (1981) 274] [INSPIRE].

  55. D. Knauss and K. Scharnhorst, Two Loop Renormalization Of Nonsmooth String Operators In Yang-mills Theory, Ann. Phys. 41 (1984) 331 [INSPIRE].

    Article  MATH  Google Scholar 

  56. H. Dorn, Renormalization of path ordered phase factors and related hadron operators in gauge field theories, Fortsch. Phys. 34 (1986) 11 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S.H. Ho, R. Jackiw and S.-Y. Pi, Finite conformal transformations, J. Phys. A 44 (2011) 225401.

    MathSciNet  ADS  Google Scholar 

  58. V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops in ABJ(M) theories, Phys. Lett. B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. I.Y. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. J.-L. Gervais and A. Neveu, The slope of the leading Regge trajectory in quantum chromodynamics, Nucl. Phys. B 163 (1980) 189 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. Y. Makeenko, P. Olesen and G.W. Semenoff, Cusped SYM Wilson loop at two loops and beyond, Nucl. Phys. B 748 (2006) 170 [hep-th/0602100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. D. Bykov and K. Zarembo, Ladders for Wilson Loops Beyond Leading Order, JHEP 09 (2012) 057 [arXiv:1206.7117] [INSPIRE].

    Article  ADS  Google Scholar 

  64. J.M. Henn and T. Huber, Systematics of the cusp anomalous dimension, JHEP 11 (2012) 058 [arXiv:1207.2161] [INSPIRE].

    Article  ADS  Google Scholar 

  65. N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP 11 (2012) 075 [arXiv:1207.5489] [INSPIRE].

    Article  ADS  Google Scholar 

  66. N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].

    MathSciNet  Google Scholar 

  67. G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of N =6 superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. T. Nishioka and T. Takayanagi, On Type IIA Penrose Limit and N = 6 Chern-Simons Theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. D. Berenstein and D. Trancanelli, Three-dimensional N = 6 SCFTs and their membrane dynamics, Phys. Rev. D 78 (2008) 106009 [arXiv:0808.2503] [INSPIRE].

    MathSciNet  Google Scholar 

  70. D. Berenstein and D. Trancanelli, S-duality and the giant magnon dispersion relation, arXiv:0904.0444 [INSPIRE].

  71. J. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. D. Gaiotto, S. Giombi and X. Yin, Spin Chains in N = 6 Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. W. Chen, G.W. Semenoff and Y.-S. Wu, Two loop analysis of nonAbelian Chern-Simons theory, Phys. Rev. D 46 (1992) 5521 [hep-th/9209005] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  74. M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS 4 /CF T 3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Seminara.

Additional information

ArXiv ePrint: 1208.5766

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griguolo, L., Marmiroli, D., Martelloni, G. et al. The generalized cusp in ABJ(M) \( \mathcal{N} \) = 6 Super Chern-Simons theories. J. High Energ. Phys. 2013, 113 (2013). https://doi.org/10.1007/JHEP05(2013)113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)113

Keywords

Navigation