Skip to main content
Log in

Bi-galileon theory II: phenomenology

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We continue to introduce bi-galileon theory, the generalisation of the single galileon model introduced by Nicolis et al. The theory contains two coupled scalar fields and is described by a Lagrangian that is invariant under Galilean shifts in those fields. This paper is the second of two, and focuses on the phenomenology of the theory. We are particularly interesting in models that admit solutions that are asymptotically self accelerating or asymptotically self tuning. In contrast to the single galileon theories, we find examples of self accelerating models that are simultaneously free from ghosts, tachyons and tadpoles, able to pass solar system constraints through Vainshtein screening, and do not suffer from problems with superluminality, Cerenkov emission or strong coupling. We also find self tuning models and discuss how Weinberg’s no go theorem is evaded by breaking Poincaré invariance in the scalar sector. Whereas the galileon description is valid all the way down to solar system scales for the self-accelerating models, unfortunately the same cannot be said for self tuning models owing to the scalars backreacting strongly on to the geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. I.I. Kogan, S. Mouslopoulos, A. Papazoglou, G.G. Ross and J. Santiago, A three three-brane universe: New phenomenology for the new millennium?, Nucl. Phys. B 584 (2000) 313 [hep-ph/9912552] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. I.I. Kogan and G.G. Ross, Brane universe and multigravity: Modification of gravity at large and small distances, Phys. Lett. B 485 (2000) 255 [hep-th/0003074] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. R. Gregory, V.A. Rubakov and S.M. Sibiryakov, Opening up extra dimensions at ultra-large scales, Phys. Rev. Lett. 84 (2000) 5928 [hep-th/0002072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Gregory, V.A. Rubakov and S.M. Sibiryakov, Gravity and antigravity in a brane world with metastable gravitons, Phys. Lett. B 489 (2000) 203 [hep-th/0003045] [SPIRES].

    ADS  Google Scholar 

  7. A. Padilla, Ghost-free braneworld bigravity, Class. Quant. Grav. 21 (2004) 2899 [hep-th/0402079] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Padilla, Cosmic acceleration from asymmetric branes, Class. Quant. Grav. 22 (2005) 681 [hep-th/0406157] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. Padilla, Infra-red modification of gravity from asymmetric branes, Class. Quant. Grav. 22 (2005) 1087 [hep-th/0410033] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. C. Charmousis, R. Gregory and A. Padilla, Stealth acceleration and modified gravity, JCAP 10 (2007) 006 [arXiv:0706.0857] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett. B 502 (2001) 199 [hep-th/0010186] [SPIRES].

    ADS  Google Scholar 

  14. C. Deffayet, G.R. Dvali and G. Gabadadze, Accelerated universe from gravity leaking to extra dimensions, Phys. Rev. D 65 (2002) 044023 [astro-ph/0105068] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. C. Charmousis, R. Gregory, N. Kaloper and A. Padilla, DGP specteroscopy, JHEP 10 (2006) 066 [hep-th/0604086] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Gregory, N. Kaloper, R.C. Myers and A. Padilla, A new perspective on DGP gravity, JHEP 10 (2007) 069 [arXiv:0707.2666] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Padilla, A short review of ’DGP Specteroscopy’, J. Phys. A 40 (2007) 6827 [hep-th/0610093] [SPIRES].

    ADS  Google Scholar 

  18. K. Koyama, Are there ghosts in the self-accelerating brane universe?, Phys. Rev. D 72 (2005) 123511 [hep-th/0503191] [SPIRES].

    ADS  Google Scholar 

  19. D. Gorbunov, K. Koyama and S. Sibiryakov, More on ghosts in DGP model, Phys. Rev. D 73 (2006) 044016 [hep-th/0512097] [SPIRES].

    ADS  Google Scholar 

  20. K. Koyama, A. Padilla and F.P. Silva, Ghosts in asymmetric brane gravity and the decoupled stealth limit, JHEP 03 (2009) 134 [arXiv:0901.0713] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. C. Deffayet, G.R. Dvali, G. Gabadadze and A.I. Vainshtein, Nonperturbative continuity in graviton mass versus perturbative discontinuity, Phys. Rev. D 65 (2002) 044026 [hep-th/0106001] [SPIRES].

    ADS  Google Scholar 

  22. G. Dvali, Predictive power of strong coupling in theories with large distance modified gravity, New J. Phys. 8 (2006) 326 [hep-th/0610013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Burrage and D. Seery, Revisiting fifth forces in the Galileon model, JCAP 08 (2010) 011 [arXiv:1005.1927] [SPIRES].

    ADS  Google Scholar 

  24. A. Ali, R. Gannouji and M. Sami, Modified gravity a la Galileon: Late time cosmic acceleration and observational constraints, Phys. Rev. D 82 (2010) 103015 [arXiv:1008.1588] [SPIRES].

    ADS  Google Scholar 

  25. C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect dark energy from Kinetic gravity braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [SPIRES].

    ADS  Google Scholar 

  26. A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory I: motivation and formulation, JHEP 12 (2010) 031 [arXiv:1007.5424] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. D.B. Fairlie, J. Govaerts and A. Morozov, Universal field equations with covariant solutions D.B. Fairlie, Nucl. Phys. B 373 (1992) 214 [hep-th/9110022] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. D.B. Fairlie and J. Govaerts, Euler hierarchies and universal equations, J. Math. Phys. 33 (1992) 3543 [hep-th/9204074] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [SPIRES].

    ADS  Google Scholar 

  30. A. Padilla, P.M. Saffin and S.-Y. Zhou, Multi-galileons, solitons and Derrick’s theorem, arXiv:1008.0745 [SPIRES].

  31. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [SPIRES].

    ADS  Google Scholar 

  32. C. de Rham et al., Cascading gravity: Extending the Dvali-Gabadadze-Porrati model to higher dimension, Phys. Rev. Lett. 100 (2008) 251603 [arXiv:0711.2072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. C. de Rham, S. Hofmann, J. Khoury and A.J. Tolley, Cascading gravity and degravitation, JCAP 02 (2008) 011 [arXiv:0712.2821] [SPIRES].

    Google Scholar 

  34. C. de Rham, An introduction to cascading gravity and degravitation, Can. J. Phys. 87 (2009) 201 [arXiv:0810.0269] [SPIRES].

    Article  ADS  Google Scholar 

  35. C. de Rham, J. Khoury and A.J. Tolley, Flat 3-brane with tension in cascading gravity, Phys. Rev. Lett. 103 (2009) 161601 [arXiv:0907.0473] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Minamitsuji, Self-accelerating solutions in cascading DGP braneworld, Phys. Lett. B 684 (2010) 92 [arXiv:0806.2390] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. N. Agarwal, R. Bean, J. Khoury and M. Trodden, Cascading cosmology, Phys. Rev. D 81 (2010) 084020 [arXiv:0912.3798] [SPIRES].

    ADS  Google Scholar 

  38. O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds Part I: Maximally symmetric solutions, Phys. Rev. D 77 (2008) 084006 [arXiv:0712.0385] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds Part II: Cosmology, Phys. Rev. D 78 (2008) 124002 [arXiv:0803.1850] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. J.M. Cline, J. Descheneau, M. Giovannini and J. Vinet, Cosmology of codimension-two braneworlds, JHEP 06 (2003) 048 [hep-th/0304147] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Vinet and J.M. Cline, Can codimension-two branes solve the cosmological constant problem?, Phys. Rev. D 70 (2004) 083514 [hep-th/0406141] [SPIRES].

    ADS  Google Scholar 

  42. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: An update, Ann. Phys. 313 (2004) 283 [hep-th/0402200] [SPIRES].

    MathSciNet  Google Scholar 

  44. C.P. Burgess, Towards a natural theory of dark energy: Supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [SPIRES].

    Article  ADS  Google Scholar 

  45. N. Kaloper and D. Kiley, Charting the landscape of modified gravity, JHEP 05 (2007) 045 [hep-th/0703190] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. N. Kaloper, Brane induced gravity: codimension-2, Mod. Phys. Lett. A 23 (2008) 781 [arXiv:0711.3210] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. C. Charmousis, G. Kofinas and A. Papazoglou, The consistency of codimension-2 braneworlds and their cosmology, JCAP 01 (2010) 022 [arXiv:0907.1640] [SPIRES].

    ADS  Google Scholar 

  48. C. Charmousis and A. Papazoglou, Properties of codimension-2 braneworlds in six-dimensional Lovelock theory, J. Phys. Conf. Ser. 189 (2009) 012007 [arXiv:0902.2174] [SPIRES].

    Article  ADS  Google Scholar 

  49. C. Charmousis and A. Papazoglou, Self-properties of codimension-2 braneworlds, JHEP 07 (2008) 062 [arXiv:0804.2121] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. E. Papantonopoulos, A. Papazoglou and V. Zamarias, Induced cosmology on a regularized brane in six-dimensional flux compactification, Nucl. Phys. B 797 (2008) 520 [arXiv:0707.1396] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. E. Papantonopoulos, A. Papazoglou and V. Zamarias, Regularization of conical singularities in warped six-dimensional compactifications, JHEP 03 (2007) 002 [hep-th/0611311] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. B. Cuadros-Melgar, E. Papantonopoulos, M. Tsoukalas and V. Zamarias, Black holes on thin 3-branes of codimension-2 and their extension into the bulk, Nucl. Phys. B 810 (2009) 246 [arXiv:0804.4459] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. B. Cuadros-Melgar, E. Papantonopoulos, M. Tsoukalas and V. Zamarias, BTZ like-string on codimension-2 braneworlds in the thin brane limit, Phys. Rev. Lett. 100 (2008) 221601 [arXiv:0712.3232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES].

    Article  ADS  Google Scholar 

  56. Supernova Search Team collaboration, A.G. Riess et al., Type Ia supernova discoveries at z > 1 from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J. 607 (2004) 665 [astro-ph/0402512] [SPIRES].

    Article  ADS  Google Scholar 

  57. Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [SPIRES].

    Article  ADS  Google Scholar 

  58. WMAP collaboration, D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [SPIRES].

    Article  ADS  Google Scholar 

  59. S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. S.L. Dubovsky and V.A. Rubakov, Brane-induced gravity in more than one extra dimensions: Violation of equivalence principle and ghost, Phys. Rev. D 67 (2003) 104014 [hep-th/0212222] [SPIRES].

    ADS  Google Scholar 

  61. G. Gabadadze and M. Shifman, Softly massive gravity, Phys. Rev. D 69 (2004) 124032 [hep-th/0312289] [SPIRES].

    ADS  Google Scholar 

  62. H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [SPIRES].

    ADS  Google Scholar 

  63. V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett. 12 (1970) 3112 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 447] [SPIRES].

    Google Scholar 

  64. J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [SPIRES].

    Article  ADS  Google Scholar 

  65. J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026 [astro-ph/0309411] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. D.F. Mota and J.D. Barrow, Varying α in a more realistic universe, Phys. Lett. B 581 (2004) 141 [astro-ph/0306047] [SPIRES].

    ADS  Google Scholar 

  67. A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [SPIRES].

    ADS  Google Scholar 

  68. C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 9 (2005) 3 [gr-qc/0510072] [SPIRES].

    Google Scholar 

  69. R. Scoccimarro, Large-scale structure in brane-induced gravity I. perturbation theory, Phys. Rev. D 80 (2009) 104006 [arXiv:0906.4545] [SPIRES].

    ADS  Google Scholar 

  70. K.C. Chan and R. Scoccimarro, Large-scale structure in brane-induced gravity II. Numerical simulations, Phys. Rev. D 80 (2009) 104005 [arXiv:0906.4548] [SPIRES].

    ADS  Google Scholar 

  71. L. Hui, A. Nicolis and C. Stubbs, Equivalence principle implications of modified gravity models, Phys. Rev. D 80 (2009) 104002 [arXiv:0905.2966] [SPIRES].

    ADS  Google Scholar 

  72. F. Bauer, J. Solà and H. Stefancic, Dynamically avoiding fine-tuning the cosmological constant: the ’Relaxed Universe’, JCAP 12 (2010) 029 [arXiv:1006.3944] [SPIRES].

    ADS  Google Scholar 

  73. C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [SPIRES].

    ADS  Google Scholar 

  74. C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [SPIRES].

    ADS  Google Scholar 

  75. C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [SPIRES].

    Google Scholar 

  76. K. Hinterbichler and J. Khoury, Symmetron fields: Screening long-range forces through local symmetry restoration, Phys. Rev. Lett. 104 (2010) 231301 [arXiv:1001.4525] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla, A., Saffin, P.M. & Zhou, SY. Bi-galileon theory II: phenomenology. J. High Energ. Phys. 2011, 99 (2011). https://doi.org/10.1007/JHEP01(2011)099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)099

Keywords

Navigation