Skip to main content
Log in

Nitrogen excretion in insects

  • Published:
Proceedings: Animal Sciences

Abstract

As a result of excessive consumption of nitrogen more than necessary for their normal life processes, insects eliminate the excess quantities in one form or the other lest the ensuing toxicity should prove fatal to them. Voiding of several other nitrogenous compounds by insects besides uric acid via one common opening—the rectum, has posed difficulties in determining their nature as true excretory products or fecal nitrogenous waste matter. In the present review article an attempt has been made to present an almost up to date knowledge on the topic based on an intense search of literature which also includes the findings from the author’s laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A D and Patton R L 1954 Determination of xanthine oxidase in insects with tetrazolium salts;Science 120 956

    Article  CAS  PubMed  Google Scholar 

  • Anderson A D and Patton R L 1955 In vitro studies of uric acid synthesis in insects;J. Exp. Zool. 128 443–451

    Article  Google Scholar 

  • Auclair J L 1959 Amino acid oxidase activity in the fat body and Malpighian tubules of some insects;J. Insect Physiol. 3 57–62

    Article  CAS  Google Scholar 

  • Auclair J L 1963 Aphid feeding and nutrition;Annu. Rev. Entomol. 8 439–490

    Article  Google Scholar 

  • Avi-Dor Y and Gonda O 1959 Studies on the adenosine triphosphate-phosphate exchange and the hydrolysis of adenosine triphosphate catalysed by a particulate fraction from the mosquito;Biochem. J. 72 8–14

    CAS  PubMed  Google Scholar 

  • Bacon J S D and Dickinson B 1957 the origin of Melezitose: A biochemical relationship between the lime tree (Tilia sp) and an Aphis (Eucallipterus tiliae L);Biochem. J. 66 289–297

    CAS  PubMed  Google Scholar 

  • Baker F C 1939 The preparation of a relatively stable urease concentrate of blowfly larvae (Lucilia sericata Meig);J. Parasitol. 25 280

    Article  Google Scholar 

  • Baker James E 1976 Nitrogenous excretory products of adults ofSitophilus oryzae andSitophilus granarius;Comp. Biochem. Physiol. B53 107–109

    Article  Google Scholar 

  • Baldwin E 1948Dynamic aspects of biochemistry 1st edition (London: Cambridge University Press)

    Google Scholar 

  • Baldwin E 1963Dynamic aspects of biochemistry 4th edition (London: Cambridge University Press)

    Google Scholar 

  • Balshin M and Phillips J E 1971 Active absorption of amino acids in the rectum of the desert locustSchistocerca gregaria;Nature New Biol. 233 53–55

    Article  CAS  PubMed  Google Scholar 

  • Barbier R 1972 Origine et formation des granules pigmentaires de la cuticule larvaire deTyria jacobeae (Lepidoptere Arctiide);C.R. Acad. Sci. Paris 274 1839–1842

    Google Scholar 

  • Barret F M and Friend W G 1970 Uric acid synthesis inRhodnius prolixus;J. Insect Physiol. 16 121–129

    Article  Google Scholar 

  • Bartel A H, Hudson B W and Craig R 1958 Pteridines in the milkweed bugOncopeltus fasciatus Dallas I Identification and localization;J. Insect Physiol. 2 348–354

    Article  CAS  Google Scholar 

  • Becker E 1937 Das Fehlen der Pterine in den Exkrementen pterinfuhrender Insekten;Hoppe-Seyler’s Z. Physiol. Chem. 246 177–180

    CAS  Google Scholar 

  • Berridge M J 1965 The Physiology of excretion in the cotton stainerDysdercus fasciatus signoret III. Nitrogen excretion and excretory metabolism;J. Exp. Biol. 43 535–552

    CAS  PubMed  Google Scholar 

  • Berridge M J and Gupta B L 1968 Fine structural localization of adenosine triphosphatase in the rectum ofCalliphora;J. Cell Sci. 3 17–32

    CAS  PubMed  Google Scholar 

  • Berthold G 1976 Untersuchungen über die Kynurenin Transaminase beiCarausius morosus (Insecta) und ihre Bedeutung für den Morphologischen Farbwechsel;J. Comp. Physiol. B111 25–32

    CAS  Google Scholar 

  • Berthold G and Buckmann D 1975 Morphologischer Farbwechsel und Kynurensaüre-exkretion bei der stabheuschreckeCarausius morosus;Br. J. Comp. Physiol. B100 347–350

    Article  CAS  Google Scholar 

  • Bhattacharya A K and Waldbauer G P 1972 The effect of diet on the nitrogenous end products excreted by larvalTribolium confusum with notes on correction of approximate digestibility and efficiency of conversion of digested food for fecal urine;Entomol. Exp. Appl. 15 238–247

    Article  Google Scholar 

  • Bheemeswar B 1959 Some aspects of amino acid metabolism in insects;4th Int. Congr. Biochem. Vienna 1958 (Oxford: Pergamon Press) pp 78–89

    Google Scholar 

  • Bignell D E and Mullins D E 1977 A preliminary investigation of the effects of diets on lesion formation in the hind gut of adult female American cockroaches;Can. J. Zool. 55 1100–1109

    Article  CAS  Google Scholar 

  • birt L and Christian B 1969 Changes in nitrogenous compounds during the metamorphosis of the BlowflyLucilia cuprina;J. Insect Physiol. 15 711–719

    Article  CAS  Google Scholar 

  • block E F and McChesney J D 1974 Two new tryptophan metabolites of the American cockroach;J. Insect Physiol. 20 1683–1686

    Article  CAS  PubMed  Google Scholar 

  • Boadle M C and Blaschko H 1968 Cockroach amino oxidase: Classification and substrate specificity;Comp. Biochem. Physiol. 25 129–138

    Article  CAS  PubMed  Google Scholar 

  • Bodenstein D 1953 Studies on the humoral mechanisms in growth and metamorphosis of the cockroachPeriplaneta americana III. Humoral effects on metabolism;J. Exp. Zool. 124 105–115

    Article  CAS  Google Scholar 

  • Brighenti A and Colla A 1940 Sul process di formazione dell acido urico uli bachi da seta;Boll. Soc. Ital. Biol. Sper. 15 197–198

    CAS  Google Scholar 

  • Brower L P 1969 Ecological Chemistry;Sci. Am. 220 22–29

    Article  CAS  PubMed  Google Scholar 

  • Brown A W A 1938a The nitrogen metabolism of an insectLucilia sericata Mg I. Uric acid, allantoin and uricase;Biochem. J. 32 895–902

    CAS  PubMed  Google Scholar 

  • Brown A W A 1938b The nitrogen metabolism of an insectLucilia sericata Mg II. Ammonia and other metabolites;Biochem. J. 32 903–912

    CAS  PubMed  Google Scholar 

  • Brown K S 1965 A new L-α-amino acid from Lepidoptera;J. Am. Chem. Soc. 87 4202–4203

    Article  CAS  PubMed  Google Scholar 

  • Brown G M 1971 The biosynthesis of Pteridines;Adv. Enzymol. 35 35–77

    CAS  PubMed  Google Scholar 

  • Brown A W A and Farber L 1936 On the deaminating enzyme of flesh-fly larvae;Biochem. J. 30 1107–1118

    CAS  PubMed  Google Scholar 

  • Brunet P C J 1965 The metabolism of aromatic compounds; inAspects of insect biochemistry (ed.) T W Goodwin (New York: Academic Press) pp 49–77

    Google Scholar 

  • Bruno C T and Cochran D G 1965 Enzymes from insect tissues which catabolize pyrimidine compounds;Comp. Biochem. Physiol. 15 113–124

    Article  CAS  PubMed  Google Scholar 

  • Bryan G T Brown R R and Price J M 1964 Mouse bladder carcinogenicity of certain tryptophan metabolites and other aromatic nitrogen compounds suspended in cholesterol;Cancer Res. 24 596–602

    CAS  PubMed  Google Scholar 

  • Buchanan J M 1951 Biosynthesis of the purines;J. Cell. Comp. Physiol. 38 143–171

    Article  CAS  Google Scholar 

  • Buchanan J M and Sonne J C 1946 The utilization of formate in uric acid synthesis;J. Biol. Chem. 166 781–792

    CAS  PubMed  Google Scholar 

  • Buchanan J M, Sonne J C and Delluva A M 1948 Biological precursors of uric acid II. The role of lactate, glycine and carbon-dioxide as precursors of the carbon chain and nitrogen-7 of uric acid;J. Biol. Chem. 173 81–98

    CAS  PubMed  Google Scholar 

  • Buck J B 1953 Physical properties and chemical composition of insect blood; inInsect physiology (ed.) K D Roeder (New York: John Wiley and Sons)

    Google Scholar 

  • Buckmann D, Willig A and Linzen B 1966 Veranderung der Hamolymphe von der Verpuppung vonCerura rinula; I. Der Gehalt an Eiweise Aminosaüren ommochrom-vorstufen und ommochromen;Z. Naturforsch. 216 1184–1195

    Google Scholar 

  • Bursell E 1965a Nitrogenous waste products of the tsetse flyGlossina morsitans;J. Insect Physiol. 11 993–1101

    Article  CAS  PubMed  Google Scholar 

  • Bursell E 1965b Nitrogenous waste products in the tsetse fly; in12th Int. Congr. Entomol. p 797

  • Bursell E 1967 The excretion of nitrogen in insects;Adv. Insect Physiol. 4 46

    Google Scholar 

  • Bursell E 1970An introduction to insect physiology (London, New York: Academic Press)

    Google Scholar 

  • Bursell E, Billing K C, Hargrove J W, McCabe C T and Slack E 1974 Metabolism of the bloodmeal in tsetse flies: A review;Acta Trop. (Basel) 31 297–320

    CAS  Google Scholar 

  • Busnel R G and Drilhon A 1942 Riboflavin in malpighian tubules;Arch. Zool. Exp. Gen. 82 321–323

    Google Scholar 

  • Butenandt A 1959 The mode of action of hereditary factors;Endeavour 11 188–192

    Google Scholar 

  • Butenandt A 1959 Wirkstoffe des insectenreiches;Naturwissenschaften 46 461–471

    Article  CAS  Google Scholar 

  • Butenandt A, Biekert E, Kubler H and Linzen B 1960 Uber ommochrome XX. Zur Verbreitung der Ommatine im Tierreich Neue Methoden zur ihren Identifizierung und quantitation Bestimmung;Hoppe-Seyler’s Z. Physiol. Chem. 319 238–256

    CAS  PubMed  Google Scholar 

  • Cambell J W 1973 Nitrogen excreation; inComparative animal physiology (ed.) C L Prosser (Philadelphia: Saunders) III edition pp 279–316

    Google Scholar 

  • Carney G C 1969 The utilization of14C-labelled adenosine diphosphate during thein vitro respiration of housefly sarcosomes;Life Sci. 8 453–464

    Article  CAS  PubMed  Google Scholar 

  • Chefurka W 1965Intermediary metabolism of nitrogenous and lipid compounds in insects;Physiol. Insecta 2 669–768

    Google Scholar 

  • Chen P S 1971Biochemical aspects of insect development (Basel: S Karger)

    Google Scholar 

  • Chen P S and Bachmann-Diem C 1964 Studies on the transamination reactions in the larval fat body ofDrosophila melanogaster;J. Insect Physiol. 10 819–829

    Article  CAS  Google Scholar 

  • Chinzei Y and Tojo S 1972 Nucleic acid changes in the whole body and several organs of the silkwormBombyx mori during metamorphosis;J. Insect Physiol. 18 1683–1698

    Article  CAS  PubMed  Google Scholar 

  • Cline R E and Pearce G W 1963 Unique effects of DDT and other chlorinated hydrocarbons on the metabolism of formate and proline in the housefly;Biochemistry 2 657–662

    Article  CAS  PubMed  Google Scholar 

  • Cochran D G 1961 The enzymatic degradation of adenosine monophosphate by insect muscle;Biochem. Biophys. Acta 52 218–220

    Article  CAS  PubMed  Google Scholar 

  • Cochran D G 1973 Comparative analysis of excreta from twenty cockroach species;Comp. Biochem. Physiol. A46 409–419

    Article  CAS  Google Scholar 

  • Cochran D G 1975 Excretion in insects; inInsect biochemistry and function (eds) D J Candy and B A Kilby (London: Chapman and Hall) pp 177–281

    Google Scholar 

  • Cochran D G 1976 Excreta analysis on additional cockroach species and the house cricket;Comp. Biochem. Physiol. A53 79–81

    Article  CAS  Google Scholar 

  • Cochran D G 1979 Comparative analysis of excreta and fat body from various cockroach species;Comp. Biochem. Physiol. A64 1–4

    Article  Google Scholar 

  • Cochran D G 1981 Comparative excreta analysis on various neotropical cockroaches and a leaf mantid;Comp. Biochem. Physiol. A70 205–209

    Article  Google Scholar 

  • Cochran D G 1984 Nitrogen excretion;Compr. Physiol. Biochem. Pharmacol. 3 467–501

    Google Scholar 

  • Cochran D G and Bruno C F 1963 A partial pathway for the synthesis of uric acid in the American cockroach;Proc. 16th Int. Congr. Zool. Washington 2 92

    Google Scholar 

  • Cochran D G, Mullins D E and Mullins K J 1979 Cytological changes in the fat body of the American cockroachPeriplaneta americana in relation to dietary nitrogen levels;Ann. Entomol. Soc. Am. 72 197–205

    CAS  Google Scholar 

  • Colhoun E H 1963 Synthesis of 5-hydroxytryptamine in the American cockroach;Experientia 19 9–10

    Article  CAS  PubMed  Google Scholar 

  • Cordero S M and Ludwig D 1963 Purification and activities of purine enzymes from various tissues of the American cockroachPeriplaneta americana L (Orthoptera, Blattidae);J.N.Y. Entomol. Soc. 71 66–73

    CAS  Google Scholar 

  • Corrigan J J 1970 Nitrogen metabolism in insects; inComparative biochemistry of nitrogen metabolism-The Invertebrates (ed.) J W Campbell (New York: Academic Press) vol 1 pp 387–488

    Google Scholar 

  • Corrigan J J, Wellner D and Meister A 1963 Determination of D-amino acid oxidase activity in insect tissues using D-allohydroxy proline as substrate;Biochim. Biophys. Acta 73 50–56

    Article  CAS  PubMed  Google Scholar 

  • Craig R 1960 The physiology of excretion in insects;Rev. Entomol. 5 53–68

    Article  Google Scholar 

  • Desai R M and Kilby B A 1958a Some aspects of nitrogen metabolism in the fat body of the larva ofCalliphora erythrocephala;Arch. Int. Physiol. Biochem. 66 248–259

    Article  CAS  Google Scholar 

  • Desai R M and Kilby B A (1958b) Experiments on uric acid synthesis by insect fat body;Arch. Int. Physiol. Biochem. 66 282–286

    Article  CAS  Google Scholar 

  • Descimon H 1971 Metabolism et excretion de la guanine chezColias crocus;J. Insect Physiol. 17 1517–1531

    Article  CAS  PubMed  Google Scholar 

  • Donnellan J F and Kilby B A 1967 Uric acid metabolism by symbiotic bacteria from the fat body ofPeriplaneta americana;Comp. Biochem. Physiol. 22 235–252

    Article  CAS  PubMed  Google Scholar 

  • Dorsett D L, Yim J J and Jacobson K B 1979 Biosynthesis of drosopterins in the head ofDrosophila melanogaster, inChemistry and biology of pteridines (eds) R L Kislink and G M Brown (North Holland: Elsevier) pp 99–104

    Google Scholar 

  • Duchateau G, Florkin M and Frappez G 1940 Sur les ferments du catabolisme purique chez les insectes;C.R. Soc. Biol. 133 436–437

    Google Scholar 

  • Egelhaaf A 1956 Excretion in the white-eyed mutant (a) of Ephestia;Z. Indukt. Abstamm. Vererbungsl. 87 769–783

    Article  CAS  PubMed  Google Scholar 

  • Emmerich H, Zahn A and Schmialek P 1965 Über die Activitat einiger Dehydrogenasen und Transaminasen beiTenebrio molitor unter den Einfluss von Farnesylmethylather,J. Insect Physiol. 11 1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Evans P D 1980 Biogenic amines in the insect nervous system;Adv. Insect Physiol. 15 317–473

    Article  CAS  Google Scholar 

  • Ewart W H and Metcalf R L 1956 Preliminary Studies of sugars and amino acids in the honey-dews of five species of Coccids feeding on citrus in California;Ann. Entomol. Soc. Am. 49 441–447

    CAS  Google Scholar 

  • Fan C L, Krivi G G and Brown G M 1975 The conversion of dihydroneopterin triphosphate to sepiapterin by an enzyme system fromDrosophila melanogaster;Biochem. Biophys. Res. Commun. 67 1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Fan C L, Hall L M, Skinska A J and Brown G M 1976 Correlation of guanosine triphosphate cyclohydrolase activity and the synthesis of pterins inDrosophila melanogaster;Biochem. Genet. 14 271–280

    Article  CAS  PubMed  Google Scholar 

  • Farrell P C, Ward R A and Hone P W 1975 Uric acid binding levels of urate ions in normal and uraemic plasma and in human serum albumin;Biochem. Pharmacol. 24 1885–1887

    Article  CAS  PubMed  Google Scholar 

  • Florkin M 1949Biochemical evolution (New York: Academic Press)

    Google Scholar 

  • Florkin M and Duchateau G 1941 Sur la distribution de la xanthineoxidase;Bull. Acad. Belg. Cl. Sci. 27 174–178

    CAS  Google Scholar 

  • Florkin M and Duchateau G 1943 Les formes du systems enzymatique de l’ uricolyse et l’ evolution du catabolisme purique chez les nimaux;Arch. Int. Physiol. Biochem. 53 267

    Article  CAS  Google Scholar 

  • Fogal W H and Kwain M J 1974 Metabolism and excretion of nitrogen during metamorphosis and egg production in the sawflyNeodiprion sertifer, J. Insect Physiol. 20 1287–1301

    Article  CAS  PubMed  Google Scholar 

  • Forrest H S, Glassman E and Mitchell H K 1956 Conversion of 2-amino-4-hydroxypteridine to isoxanthopterin inDrosophila melanogaster;Science 124 725–726

    Article  CAS  PubMed  Google Scholar 

  • Forrest H S, Harris S E and Morton L J 1967 Inosine, guanosine, uric acid, DNA and RNA in developing eggs of the milkweed bugOncopeltus fasciatus (Dallas);J. Insect Physiol. 13 359–367

    Article  CAS  Google Scholar 

  • Friend W G 1958 Nutritional requirements of phytophagous insects;Annu. Rev. Entomol. 8 57–74

    Article  Google Scholar 

  • Garcia I, Roche J and Tixier M 1956a Sur le metabolisme de l’ arginine chez les insectes;Bull. Soc. Chim. Biol. 38 1423–1433

    CAS  PubMed  Google Scholar 

  • Garcia I, Roche J and Tixier M 1956b Sur le metabolisme hydrolytique de l’ arginine chez les insectes et sa signification metaboliques;C.R. Soc. Biol. 150 632–634

    CAS  Google Scholar 

  • Gilmour D 1961The biochemistry of insects (New York, London: Academic Press)

    Google Scholar 

  • Gilmour D 1965The metabolism of insects (San Francisco: Freeman)

    Google Scholar 

  • Gilmour D and Calaby J H 1952 The magnesium activated ATPase of insect muscle;Arch. Biochem. Biophys. 41 83–103

    Article  CAS  PubMed  Google Scholar 

  • Gilmour D and Calaby J H 1953 Myokinase and Pyrophosphatase of insect muscle;Enzymologia 16 34–40

    CAS  PubMed  Google Scholar 

  • Goldsmith T H and Warner L T 1964 Vitamin A in the vision of insects;J. Gen. Physiol. 47 433–441

    Article  CAS  PubMed  Google Scholar 

  • Goodwin T W and Srisukh S 1950 Biochemistry of locusts 3. Insectorubin the redox pigment present in the integument and eyes of the desert locust (Schistocerca gregaria Forsk), the African migratory locust (Locusta migratoria migratoriodes R and F) and other insects;Biochem. J. 47 549–554

    CAS  PubMed  Google Scholar 

  • Gray H E and Fraenkel G 1954 The carbohydrate components in honeydew;Physiol. Zool. 27 56–65

    CAS  Google Scholar 

  • Gyure W L 1974 Catabolism of isoxanthopterin during the development of the silkwormBombyx mori;Insect Biochem. 4 303–312

    Article  CAS  Google Scholar 

  • Harmsen R 1966a The excretory role of pteridines in insects;J. Exp. Biol. 45 1–13

    CAS  PubMed  Google Scholar 

  • Harmsen R 1966b Identification of fluorescing and UV absorbing substances inPieris brassicae L;J. Insect Physiol. 12 23–30

    Article  CAS  Google Scholar 

  • Harmsen R 1966c A quantitative study of the pteridines inPieris brassicae L during post-embryonic development;J. Insect Physiol. 12 9–22

    Article  CAS  Google Scholar 

  • Harmsen R 1969 The effect of atmospheric oxygen pressure on the biosynthesis of simple pterines inPieris butterflies;J. Insect Physiol. 15 2239–2244

    Article  CAS  Google Scholar 

  • Harrington J S 1961 Studies of the amino acids ofRhodnius prolixus II Analysis of the excretory material;Parasitology 51 319–326

    Article  Google Scholar 

  • Hayashi Y 1961a Studies on the xanthine oxidase system in the silkwormBombyx mori L I. Guaninexanthine dehydrogenase system of the fat body of the silkworm larva;J. Seric. Sci. Jpn. 30 305–312

    CAS  Google Scholar 

  • Hayashi Y 1961b Urea formation in tissues ofBombyx larva; Nippon Sanshigaku Zasshi;J. Seric. Sci. Jpn. 30 13–16

    CAS  Google Scholar 

  • Hayashi Y 1962 On the properties of xanthine dehydrogenase of the silkwormBombyx mori L I. Isolation and components of the silkworm enzyme;J. Seric. Sci. Jpn. 31 25–31

    Google Scholar 

  • Haydack M H 1953 Influence of the protein level of the diet on the longevity of cockroaches;Ann. Entomol. Soc. Am. 46 547–560

    Google Scholar 

  • Heller J and Jezewska M M 1959 The synthesis of uric acid in the Chinese Tussur Moth (Antheraea pernyi);Bull. Acad. Pol. Sci. Ser. Sci. Biol. 7 1–4

    Google Scholar 

  • Heller J and Jezewska M M 1960 The uric acid riboside in Sphingidae moths;Acta Biochim. Pol. 7 469–473

    CAS  Google Scholar 

  • Hodge L D and Glassman E 1967a Purine catabolism inDrosophila melanogaster I. Reaction leading to xanthine dehydrogenase;Biochem. Biophys. Acta 149 335–343

    CAS  PubMed  Google Scholar 

  • Hodge L D and Glassman E 1967b Purine catabolism inDrosophila melanogaster II. Guanine deaminase, inosine phosphorylase and adenosine deaminase activities in mutants with altered xanthine dehydrogenase activities;Genetics 57 571–577

    CAS  PubMed  Google Scholar 

  • Hofmanova O, Manowska J, Pelouch V and Kubista V 1967 Free and bound adenosine diphosphate inresting insect muscle and its relation to adenosine triphosphate;Physiol. Bohemoslov. 16 97–103

    CAS  Google Scholar 

  • Hopkins F G 1895 The pigments ofPieridae: A contribution to the study of excretory substances which function in ornament;Philos. Trans. R. Soc. London B186 661–682

    Article  Google Scholar 

  • Hopkins T L and Lofgren P A 1968 Adenine metabolism and urate storage in the cockroachLeucophaea maderae;J. Insect Physiol. 14 1803–1814

    Article  CAS  Google Scholar 

  • Hoskins W M and Craig R 1935 Recent progress in insect physiology;Physiol. Rev. 15 525–596

    Google Scholar 

  • House H L 1965 Insect nutrition;Physiol. Insecta 2 769–813

    Google Scholar 

  • Hudson B W, Bartel A H and Craig R 1959 Pteridines in the milkweed bugOncopeltus fasciatus (Dallas) II. Quantitative determination of pteridine content of tissues during growth;J. Insect Physiol. 3 63–73

    Article  CAS  Google Scholar 

  • Inagami K 1955 Formation of pigment in the silkworm VIII. Xanthurenic acid and 4, 8-dihydroxy quinoline in the silkworm pupae;J. Seric. Sci. Jpn. 24 295–299

    CAS  Google Scholar 

  • Inokuchi T, Horie Y and Ito T 1969 Urea cycle in the silkwormBombyx mori;Biochem. Biophys. Res. Commun. 35 783–787

    Article  CAS  PubMed  Google Scholar 

  • Irreverre F and Terzian L A 1959 Nitrogen partition in excreta of three species of mosquiotoes;Science 129 1358–1359

    Article  CAS  PubMed  Google Scholar 

  • Irzykiewicz H 1955 Xanthine oxidase of the clothes mothTineola bisselliella and some other insects;Aust. J. Biol. Sci. 8 369–377

    CAS  Google Scholar 

  • Ito T and Mukaiyama F 1964 Relationship between protein contents of diets and xanthine oxidase activity in the silkwormBombyx mori L;J. Insect. Physiol. 10 789–796

    Article  CAS  Google Scholar 

  • Jezewska M M, Gorzkowski B and Sawicka T 1967 The structure of uric acid riboside and changes in its content in moths;Acta Biochim. Pol. 14 71–75

    CAS  PubMed  Google Scholar 

  • Johnson M M, Nash D and Henderson J F 1980a Metabolism of adenosine in larvae ofDrosophila melanogaster;Comp. Biochem. Physiol. B66 549–553

    Google Scholar 

  • Johnson M M, Nash D and Henderson J F 1980b Purine metabolism in larvae ofDrosophila melanogaster fed radioactive hypoxanthine, inosine or formate;Comp. Biochem. Physiol. B66 555–561

    Article  Google Scholar 

  • Johnson M M, Nash D and Henderson J F 1980c Metabolism of guanine and guanosine in larvae ofDrosophila melanogaster;Comp. Biochem. Physiol. B66 563–567

    Article  Google Scholar 

  • Kaufman S 1967 Pteridine cofactors;Annu. Rev. Biochem. 36 171–184

    Article  CAS  PubMed  Google Scholar 

  • Kayser H 1979 Ommochrome formation and Kinurenine excretion inPieris brassicae: Relation to tryptophan supply on an artificial diet;J. Insect Physiol. 25 641–646

    Article  CAS  Google Scholar 

  • Keller E C Jr and Glassman E 1963 Xanthine dehydrogenase: Differences in activity amongDrosophila strains; Science143 40–41

    Article  Google Scholar 

  • Keller E C, Saverance P and Glassman E 1963 Paper electrophoresis of xanthine dehydrogenase fromDrosophila;Nature (London) 198 286–287

    Article  CAS  Google Scholar 

  • Kikkawa H 1953 Biochemical genetics ofBombyx mori;Adv. Genet. 5 107–140

    Article  CAS  PubMed  Google Scholar 

  • Kilby B A and Neville E 1957 Amino acid metabolism in locust tissues;J. Exp. Biol. 34 276–289

    CAS  Google Scholar 

  • Kondo Y 1967 Biochemical studies on excretion of a large amount of histidine by lepidopterous larvae especially silkworm larvae;J. Agric. Chem. Soc. Jpn. 41 324–328

    CAS  Google Scholar 

  • Krivi G G and Brown G M 1979 Purification and properties of the enzymes fromDrosophila melanogaster that catalyze the synthesis of sepiapterin from dihydroneopterin triphosphate;Biochem. Genet. 17 371–390

    Article  CAS  PubMed  Google Scholar 

  • Krzyzanowska M and Niemierko W 1980 Purine and uric acid riboside in the ligated larvae ofGalleria mellonella L;Insect Biochem. 10 323–330

    Article  CAS  Google Scholar 

  • Kursteiner R 1961 Uber die fluoreszierenden stoffe (Pterine) in den Meconien der wildrasse und der Mutanten white und rosy vonDrosophila melanogaster;J. Insect Physiol. 7 5–31

    Article  Google Scholar 

  • Kuznezova L E 1969 Mutagenic effect of 3-hydroxy-kynurenine and 3-hydroxy-anthranilic acid;Nature (London) 222 484–485

    Article  CAS  Google Scholar 

  • Lafont R 1974 Adenosine a sex-linked excretory product of a lepidopteranPieris brassicae;Experientia 30 998–999

    Article  CAS  PubMed  Google Scholar 

  • Lafont R and Pennetier J L 1975 Uric acid metabolism during pupal-adult development ofPieris brassicae;J. Insect Physiol. 21 1323–1336

    Article  CAS  Google Scholar 

  • Langer H and Hoffmann C 1966 Elektro- und stoffwechselphysiologische untersuchungen uber den einfluss von Ommochromen und Pteridinen auf die funktion des facettenauges vonCalliphora erythrocephala;J. Insect Physiol. 12 357–387

    Article  CAS  Google Scholar 

  • Lazar K V and Mohamed U V K 1979 The excretion of urea by the larvae ofSpodoptera mauritia Boisd (Noctuidae Lepidoptera) during development;Experientia 35 1468

    Article  CAS  PubMed  Google Scholar 

  • Leibenguth F 1967 Regulation of tryptophan metabolism in the parasite waspHabrobracon juglandis;Experientia 23 1069–1071

    Article  CAS  PubMed  Google Scholar 

  • Leifert H 1935 Untersuchungen uber den excretstoffwechsel bei Eiern, Raupen and Puppen vonAntherea pernyi;Zool. Jahrb. Abt. Allg. Zool. Physiol. 55 171–190

    Google Scholar 

  • Lennox F G 1940 Distribution of ammonia in larvae ofLucilia cuprina Wied;Nature (London) 146 268

    Article  CAS  Google Scholar 

  • Lennox F G 1941a Studies of the physiology and toxicology of blow-flies 8. The rate of ammonia production by larvae ofLucillia cuprina and its distribution in this insect;Aust. Commonw. Counc. Sci. Ind. Res. Pamp. 109 9–35

    Google Scholar 

  • Lennox F G 1941b Studies of the physiology and toxicology of blowflies 9. The enzymes responsible for ammonia production by larvae ofLucilia cuprina;Aust. Commonw. Counc. Sci. Ind. Res. Pamp. 109 37–64

    Google Scholar 

  • Levenbook L, Hutchins R F N and Bauer A C 1971 Uric acid and basic amino acids during metamorphosis of the tobacco hornwormManduca sexta with special reference to the meconium;J. Insect Physiol. 17 1321–1331

    Article  CAS  Google Scholar 

  • Linzen B 1974 The tryptophan ommochrome pathway in insects;Adv. Insect Physiol. 10 117–246

    Article  CAS  Google Scholar 

  • Linzen B and Ishiguro I 1966 3-Hydroxy-Kynurenin beiBombyx mori Ein neuer Tryptophanmetabolit: 3-Hydroxy-kinurenin-glucosid;Z. Naturforsch. B21 132–137

    CAS  Google Scholar 

  • Linzen B and Schartau W 1974 A quantitative analysis of tryptophan metabolism during development of the blowflyProtophormia terraenovae;Insect Biochem. 4 325–340

    Article  CAS  Google Scholar 

  • Lisa J D and Ludwig D 1959 Uricase, guanase and xanthine oxidase from the fat body of the cockroach (Leucophea maderae);Ann. Entomol. Soc. Am. 52 548–551

    CAS  Google Scholar 

  • Ludwig D 1954 Changes in the distribution of nitrogen in blood of the Japanese beetlePopillia japonica Newman during growth and reproduction;Physiol. Zool. 27 325–334

    CAS  Google Scholar 

  • Maddrell S H P 1971 The mechanism of insect excretory systems;Adv. insect Physiol. 8 200–331

    Google Scholar 

  • Maddrell S H P 1977 Insect Malpighian tubules; inTransport of ions and water in animals (eds) B L Gupta, R B Moreton, J L Oschman and B J Wall (London: Academic Press) pp 541–569

    Google Scholar 

  • Maddrell S H P 1981 The functional design of the insect exretory systems;J. Exp. Biol. 90 1–15

    Google Scholar 

  • Maddrell S H P and Gardiner B O C 1980 The retention of amino acids in the haemolymph during diuresis ofRhodnius;J. Exp. Biol. 87 315–329

    CAS  Google Scholar 

  • Maddrell S H P, Pilcher D E M and Gardiner B O C 1971 Pharmacology of the Malpighian tubules ofRhodnius andCarausius: the structure activity relationship of tryptamine analogues and the role of cyclic AMP;J. Exp. Biol. 54 779–804

    CAS  PubMed  Google Scholar 

  • Magasanik B and Karibian D 1960 Purine nucleotide cycles and their metabolic role;J. Biol. Chem. 235 2672–2681

    CAS  PubMed  Google Scholar 

  • Mahler H R and Cordes E H 1966Biological chemistry (New York, London: Harper and Row)

    Google Scholar 

  • Mainguet A M and et Le Berre J R 1973 Nutrition du cricket migrateurLocusta migratoria (Orthoptera acididea) II. Excretion Azotee en Fonction De Divers Aliments;Arch. Sci. Physiol. 27 91–113

    CAS  Google Scholar 

  • Maruyama K 1954 Studies on adenosinetriphosphatases of various insect muscles;J. Fac. Sci. Univ. Tokyo Sect. 47 231–271

    Google Scholar 

  • Mauchamp B and Lafont R 1975 Developmental studies inPieris brassicae (Lepidoptera) II. A study of nitrogenous excretion during the last larval instar;Comp. Biochem. Physiol. B51 445–449

    Article  CAS  Google Scholar 

  • Mazda T, Tsusue M and Sakate S 1980 Purification and identification of a yellow pteridine characteristic of the larval colour of the Kiuki mutant of the silkwormBombyx mori;Insect Biochem. 10 357–362

    Article  CAS  Google Scholar 

  • McAllan J W and Chefurka W 1961a Some physiological aspects of glutamate-aspartate transamination in insects;Comp. Biochem. Physiol. 2 290–299

    Article  CAS  PubMed  Google Scholar 

  • McAllan J W and Chefurka W 1961b Properties of transaminases and glutamic dehydrogenase in the cockroachPeriplaneta americana;Comp. Biochem. Physiol. 3 1–19

    Article  CAS  PubMed  Google Scholar 

  • McCabe C T 1973The metabolic interrelationships of amino acids and lipids in the tsetse fly Glossina morsitans, Ph.D. thesis University of London, London, UK

    Google Scholar 

  • McDonnell P C and Tillinghast E K 1973 Metabolic sources of ammonia in the earthwormLumbricus terrestris (L);J. Exp. Zool. 185 145–152

    Article  Google Scholar 

  • McEnroe W D 1956Uric acid metabolism in the American cockroach Periplaneta americana (L), Ph.D. Thesis, Rutgers University, New Brunswick, New Jersey, USA

    Google Scholar 

  • McEnroe W D and Forgash A J 1957 Thein vivo incorporation of14C formate in the ureide groups of uric acid byPeriplaneta americana (L); Ann.Entomol. Soc. Am. 50 429–431

    CAS  Google Scholar 

  • McEnroe W D and Forgash A J 1958 Formate metabolism in the American cockroachPeriplaneta americana L; Ann.Entomol. Soc. Am. 51 126–129

    CAS  Google Scholar 

  • McEnroe W D 1966 Excretion of uric acid inPeriplaneta americana Ann. Entomol. Soc. Am. 59 1012–1013

    CAS  Google Scholar 

  • McNabb R A and McNabb F M A 1980 Physiological chemistry of uric acid: Solubility, colloid and ionbinding properties;Comp. Biochem. Physiol. A67 27–34

    Article  Google Scholar 

  • McNabb F M A and McNabb R A and Ward J M Jr 1972 The Effects of dietary protein content on water requirements and ammonia excretion in pigeonsColumbia livia Comp. Biochem. Physiol. A43 181–185

    Article  CAS  Google Scholar 

  • McNally J B, McCaughey W F, Standifer L N and Todd F E 1965 Partition of excreted nitrogen from honey bees fed various proteins;J. Nutr. 85 113–116

    CAS  PubMed  Google Scholar 

  • McShan W H, Kramer S and Olson N F (1955) Adenosinetriphosphatase activity of American cock roach and woodroach thoracic muscle;Biol. Bull. 108 45–53

    Article  CAS  Google Scholar 

  • Milburn N S 1966 Fine structure of the pleomorphic bacteroids in the mycetocytes and ovaries of several genera of cockroaches;J. Insect Physiol. 12 1245–1254

    Article  Google Scholar 

  • Miller S 1980 Utilization and interconversion of purines and ribo-nucleosides in the mosquitoAnopheles albimanus Weidemann;Comp. Biochem. Physiol. B66 517–522

    Google Scholar 

  • Miller S and Collins J M 1973 Metabolic purine pathways in the developing ovary of the houseflyMusca domestica;Comp. Biochem. Physiol. B44 1153–1163

    Article  CAS  Google Scholar 

  • Mills R R and Cochran D G 1966 Purification and properties of myokinase from cockroach thoracic muscle mitochondria;Comp. Biochem. Physiol. 18 37–45

    Article  CAS  PubMed  Google Scholar 

  • Mills R R and Cochran D G 1967 Adenosinetriphosphatases from thoracic muscle mitochondria of the American cockroach;Comp. Biochem. Physiol. 20 919–923

    Article  CAS  Google Scholar 

  • Mitlin N and Vickers D H 1964 Guanine in the excreta of the boll weevil;Nature (London) 203 1403–1404

    Article  CAS  Google Scholar 

  • Mitlin N, Vickers D H and Hedin P A 1964 End products of metabolism in the boll weevilAnthonomous grandis Boheman Non protein amino acids in the faeces;J. Insect Physiol. 10 393–397

    Article  CAS  Google Scholar 

  • Mittler T E 1958 Studies in the feeding and nutrition ofTuberolachnus salignus (Gmelin) Homoptera Aphidae II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew;J. Exp. Biol. 35 74–84

    CAS  Google Scholar 

  • Moloo S K 1977 Aspects of the metabolism of U-14C arginine U-14C histidine and U-14C lysine by adult femaleGlossina morsitans during pregnancy;Comp. Biochem. Physiol. B57 23–26

    CAS  Google Scholar 

  • Moriuchi A, Koga K, Yamada J and Akune S 1972 DNA synthesis and activities of pyrimidine-synthesizing enzymes in the silk gland ofBombyx mori J. Insect Physiol. 18 1463–1476

    Article  CAS  Google Scholar 

  • Mullins D E 1971An investigation into the nitrogen balance of an insect Periplaneta americana L with specific reference to urate storage and mobilization. The urate storage complex and nitrogenous excretory products; Ph.D. Dissertation, VPI and SU Library, Blacksburg, Virginia, USA

    Google Scholar 

  • Mullins D E 1974 Nitrogen metabolism in the American cockroach: An examination of whole body ammonium and other cations excreted in relation to water requirements;J. Exp. Biol. 61 541–556

    CAS  PubMed  Google Scholar 

  • Mullins D E and Cochran D G 1972 Nitrogen excretion in cockroaches: Uric acid is not a major product;Science Wash. 177 699–701

    Article  CAS  Google Scholar 

  • Mullins D E and Cochran D G 1973 Tryptophan metabolite excretion by the American cockroach;Comp. Biochem. Physiol. B44 549–555

    Article  CAS  Google Scholar 

  • Mullins D E, Cochran D G 1974 Nitrogen metabolism in the American cockroach: An examination of whole body and fat body regulation of cations in response to nitrogen balance;J. Exp. Biol. 61 557–570

    CAS  PubMed  Google Scholar 

  • Mullins D E and Cochran D G 1975a Nitrogen metabolism in the American cockroach I. An examination of positive nitrogen balance with respect to uric acid stores;Comp. Biochem. Physiol. A50 489–500

    Article  CAS  Google Scholar 

  • Mullins D E and Cochran D G 1975b Nitrogen metabolism in the American cockroach II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores;Comp. Biochem. Physiol. A50 501–510

    Article  CAS  Google Scholar 

  • Mullins D E and Cochran D G 1976 A comparative study of nitrogen excretion in twenty-three cockroach species;Comp. Biochem. Physiol. A53 393–399

    Article  CAS  Google Scholar 

  • Mullins D E and Keil C B 1980 Paternal investment of urates in cockroaches;Nature (London) 283 567–569

    Article  CAS  Google Scholar 

  • Murphy M R V and Micks D W 1964 Transamination inAedes aegypti;J. Econ. Entomol. 57 12–14

    Google Scholar 

  • Nation J L 1963 Identification of xanthine in excreta of the greater wax mothGalleria mellonella (L);J. Insect Physiol. 9 195–200

    Article  CAS  Google Scholar 

  • Nation J L and Patton R L 1961 A study of nitrogen excretion in insects;J. Insect Physiol. 6 299–308

    Article  CAS  Google Scholar 

  • Nation J L and Thomas K K 1965 Quantitative studies on purine excretion in the greater wax mothGalleria mellonella;Ann. Entomol. Soc. Am. 58 883–885

    CAS  Google Scholar 

  • Nazari A 1902Reale Acad. Gorgofili Firenze 80 356

    Google Scholar 

  • Needham J 1938 Contributions of chemical physiology to the problem of reversibility of evolution;Biol. Rev. Cambridge Philos. Soc. 13 225–251

    Article  CAS  Google Scholar 

  • Needham J 1950Biochemistry and morphogenesis (London: Cambridge University Press)

    Google Scholar 

  • Nelson W A 1958 Purine excretion by the sheep KedMelophagus ovinus L;Nature (London) 182 115

    Article  CAS  Google Scholar 

  • Nelson M 1964 Some properties of uricase from the houseflyMusca domestica, Comp. Biochem. Physiol. 12 37–42

    Article  CAS  PubMed  Google Scholar 

  • Nemec V and Jarolim V 1980 Excretion of some juvenoids ofLocusta migratoria larvae;Acta Entomol. Bohemoslov. 77 76–81

    CAS  Google Scholar 

  • Nolfi J R 1970 Biosynthesis of uric acid in the tunicateMolgula manhattensis with a general scheme for the function of stored purines in animals;Comp. Biochem. Physiol. 35 827–842

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H and Hasegawa K 1980 Kynureninase and its activity during metamorphosis of the silkwormBombyx mori;Insect Biochem. 10 589–593

    Article  CAS  Google Scholar 

  • Pant Radha and Agrawal H C 1963 Analysis of the excretory material ofAttacus ricini in the fifth instar larval and adult stages;Arch. Int. Physiol. Biochim. 71 605–613

    Article  Google Scholar 

  • Pant Radha and Kumar S 1978 Is a urea cycle present in insects?;Biochem. J. 174 341–344

    Google Scholar 

  • Pant Radha, Jaiswal Geeta and Pande K N 1984 A comparative study of the composition of the excretory products of two insectsPhilosamia ricini andAntherea mylitta months (Lepidoptera: Saturniidae)Indian J. Comp. Anim. Physiol. 2 64–69

    Google Scholar 

  • Parzen S D and Fox A S 1964 Purification of xanthine dehydrogenase fromDrosophila melanogaster, Biochim. Biophys. Acta 92 465–471

    CAS  PubMed  Google Scholar 

  • Pfteiderer W and Taylor E C 1964Pteridine chemistry (London: Pergamon Press)

    Google Scholar 

  • Pierre L L 1964 Uricase activity of isolated symbionts and the aposymbiotic fat body of a cockroach;Nature (London) 201 54–55

    Article  CAS  Google Scholar 

  • Pierre L L 1965 Guanase activity of the symbionts and the fat bodies of the cockroachLeucophaea maderae;Nature (London) 208 666–667

    Article  CAS  Google Scholar 

  • Porembska Z and Mochnacka I 1964 The ornithine cycle inCelerio euphorbiae, Acta Biochim. Pol. 11 109–117

    Google Scholar 

  • Porter P 1963a Physico-chemical factors involved in urate calculus formation I. Solubility;Res. Vet. Sci. 4 580–591

    CAS  Google Scholar 

  • Porter P 1963b Physico-chemical factors involved in urate calculus formation II. Colloidal flocculation;Res. Vet. Sci. 4 592–602

    CAS  Google Scholar 

  • Powles R F 1953 Studies on the digestion of wool by insects VIII. The significance of certain excretory products of the clothes mothTineola biselliella and the carpet beetleAttagenus piceus;Aust. J. Biol. Sci. 6 109–117

    Google Scholar 

  • Prince W T and Berridge M J 1973 The role of calcium in the action of 5-hydroxytryptamine and cyclic AMP on salivary glands;J. Exp. Biol. 58 367–384

    CAS  Google Scholar 

  • Prosser C L (ed) 1952Comparative animal physiology (Philadelphia: Saunders)

    Google Scholar 

  • Prota C D 1961 Enzymes in the hemolymph of the mealwormTenebrio molitor L;J. N. Y. Entomol. Soc. 69 59–67

    CAS  Google Scholar 

  • Prusch R D 1971 The site of ammonia excretion in the blowflySarcophaga bullata;Comp. Biochem. Physiol. A39 761–767

    Article  CAS  Google Scholar 

  • Prusch R D 1972 Secretion of ammonium chloride by the hindgut ofSarcophaga bullata larvae;Comp. Biochem. Physiol. A41 215–223

    Article  CAS  Google Scholar 

  • Purrman R 1940 Über die Flugelpigmente der Schmetterlinge VII. Synthese des Leukopterins und Natur des Guanopterins;Justus Liebigs Ann. Chem. 544 182–190

    Article  Google Scholar 

  • Razet P 1952 Catabolisme des purines chez lesColembole xenylla Welchii Folsom (Insecte Apterygote):C. R. Acad. Sci. 234 2566–2568

    CAS  Google Scholar 

  • Razet P 1953 Recherches sur la localisation des enzymes uricolytiques chez les insectes;C. R. Acad. Sci. 236 1304–1306

    CAS  Google Scholar 

  • Razet P 1954 Sur l’elimination d’acide allantoique par quelques insectes Lepidopteres;C. R. Acad. Sci. 239 905–907

    CAS  Google Scholar 

  • Razet P 1956 Sur l’elimination simultanee d’acide urique et d’acide allantoique chez les insectes;C. R. Acad. Sci. 243 185–187

    CAS  Google Scholar 

  • Razet P 1957 l’uricolyse chez les insectes;Arch. Orig. Serv. Docum. C.N.R.S. 361

  • Razet P 1961 Recherches sur l’uricolyse chez les insectes;Bull. Soc. Sci. Britagne 36 1–206

    CAS  Google Scholar 

  • Razet P 1965 Sur l’activite de l’allantoinase et de l’allantoicase des insectes en fonction de concentrations croissantes de leurs substrats;Bull. Soc. Sci. Britagne 40 63–68

    CAS  Google Scholar 

  • Razet P 1966 Les elements terminaux de catabolisme azote chez les insectes;Ann. Biol. 5 43–73

    CAS  Google Scholar 

  • Reddy S R R and Campbell J W 1967 Enzymes of arginine metabolism in insects; Arginase;Am. Zool. 7 195

    Google Scholar 

  • Reddy S R R and Campbell J W 1969a Arginine metabolism in insects: Properties of insect fat body arginase;Comp. Biochem. Physiol. 28 515–534

    Article  CAS  Google Scholar 

  • Reddy S R R and Campbell J W 1969b Arginine metabolism in insects: Role of arginase in proline formation during silkworm development;Biochem. J. 115 495–503

    CAS  Google Scholar 

  • Rembold H and Gyure W L 1972 Biochemistry of the pteridines;Ange. Chem. 11 1061–1072

    Article  CAS  Google Scholar 

  • Riegel J A 1972Comparative physiology of renal excretion Edinburgh: Oliver and Boyd)

    Google Scholar 

  • Riemke E, Mitedieri E, Affonso O E and Ribiero L P 1978 Comparative aspects of xanthine dehydrogenase activity ofPanstrongylus megistus, Comp. Biochem. Physiol. B61 53–57

    Google Scholar 

  • Robinson W 1935 Allantoin a constituent of maggot excretions stimulates healing of chronic discharging wounds;J. Parasitol. 21 354–358

    Article  CAS  Google Scholar 

  • Robinson W and Baker F C 1939 The Enzyme urease and the occurrence of ammonia in maggot-infected wounds;J. Parasitol. 25 149–155

    Article  Google Scholar 

  • Robinson W and Wilson G S 1939 Changes in the concentration of urease during pupal development of the blowflyPhormia regina;J. Parasitol. 25 455–459

    Article  Google Scholar 

  • Rocco M L 1938 Le metabolisme des composes d’origine purique chez les insectes;C. R. Acad. Sci. 207 1006–1008

    CAS  Google Scholar 

  • Roeder K D (ed) 1953Insect physiology (New York: John Wiley)

    Google Scholar 

  • Ross D J 1959 Changes in the activity of uricase and xanthine oxidase during the life cycle of the Japanese beetlePopillia japonica Newm;Physiol. Zool. 32 239–245

    CAS  Google Scholar 

  • Roth L M 1967 Uricose glands in the accessory sex gland complex of maleBlattaria;Ann. Entomol. Soc. Am. 60 1203–1211

    CAS  PubMed  Google Scholar 

  • Roth L M and Dateo G P 1964 Uric acid in the reproductive system of the males of the cockroachBlatella germanica;Science Wash. 146 782–784

    Article  CAS  Google Scholar 

  • Roth L M and Dateo G P 1965 Uric acid storage and excretion by accessory sex glands of male cockroaches;J. Insect Physiol. 11 1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Russo-Caia S 1963 Nitrogen excretion inMusca during metamorphosis;Rend. 1st Sci. Univ. Camerina 4 216–228

    CAS  Google Scholar 

  • Sacktor B 1953 Investigations on the mitochondria of the houseflyMusca domestica L;J. Gen. Physiol. 36 371–387

    Article  CAS  PubMed  Google Scholar 

  • Sacktor B and Cochran D G 1957 Dephosphorylation of nucleotides by insect flight muscle;J. Biol. Chem 226 241–253

    CAS  PubMed  Google Scholar 

  • Sacktor B, Thomas G M, Moser J C and Bloch D I 1953 Dephosphorylation of adenosine triphosphate by tissues of the American cockroachPeriplaneta americana L;Biol. Bull. 105 166–173

    Article  CAS  Google Scholar 

  • Sakurai S and Tsujita M 1976a Genetical and biochemical studies of pteridine granule membrane in larval hypodermal cells of the silkworm I. Purification and characterization of the membrane protein from pteridine granules of a normal strain;Jpn. J. Genet. 51 39–52

    Article  CAS  Google Scholar 

  • Sakurai S and Tsujita M 1976b Genetical and biochemical studies of pteridine granule membrane in larval hypodermal cells of the silkworm II. Genetic variations in membrane proteins of pteridine granules isolated from several mutants with transparent larval skin;Jpn. J. Genet. 51 79–89

    Article  CAS  Google Scholar 

  • Schildknect H, Birringer H and Krauss D 1969 Arthropod defensive substances XXXVI, Identification of the yellow pigment from prothoracic defensive scent glands ofIlybius fenestratus;Naturforsch. B24 38–47

    Google Scholar 

  • Schildknect H, Krebs G and Birringer H 1971 Arthropod defensive substances L1 Tryptophan as a precursor of insect alkaloid methyl-8-hydroxy-quinoline-2-carboxylate fromIlybius fenestratus;Chem. Ztg. 95 332

    Google Scholar 

  • Schoffeniels E and Gilles R 1970 Nitrogenous constituents and nitrogen metabolism in arthropods;Chem. Zool. A5 199–227

    CAS  Google Scholar 

  • Schopf C and Becker E 1936 Über neue Pterine;Justus Liebigs Ann. Chem. 524 49–123

    Article  CAS  Google Scholar 

  • Schopf C and Reichert R 1941 Zur Kenntnis des Leukopterins;Justus Liebigs Ann. Chem. 548 82–94

    Article  CAS  Google Scholar 

  • Sedee J W 1958 Dietetic requirements and intermediary protein metabolism of an insect (Calliphora erythrocephala Meig);Entomol. Exp. Appl. 1 38–40

    Article  CAS  Google Scholar 

  • Seegmiller J E 1969 Diseases of purine and pyrimidine metabolism; inDiseases of metabolism (ed.) P K Bondy (Philadelphia: Saunders) pp 516–579

    Google Scholar 

  • Shyamala M B 1964 Detoxification of benzoate by glycine conjugation in the silkwormBombyx mori L;J. Insect Physiol. 10 385

    Article  CAS  Google Scholar 

  • Sidhu H S and Patton R L 1970 Carbohydrates and nitrogenous compounds in the Honeydew of the Mustard AphidLiapaphis erysimi;J. Insect Physiol. 16 1339–1348

    Article  CAS  Google Scholar 

  • Smith J H and Forrest H S 1976a Characterization of an isoxanthopterin-binding protein fromOncopeltus fasciatus, J. Insect Physiol. 22 187–194

    Article  CAS  PubMed  Google Scholar 

  • Smith J H and Forrest H S 1976b The possible biological role of an isoxanthopterin-binding protein isolated fromOncopeltus embryos;Insect Biochem. 6 131–134

    Article  CAS  Google Scholar 

  • Smith K D, Ursprung H and Wright T R E 1963 Xanthine dehydrogenase inDrosophila: Detection of isozymes;Science 142 226–227

    Article  CAS  PubMed  Google Scholar 

  • Speeg K V Jr and Campbell J W 1968 Formation and volatalization of ammonia gas by terrestrial snails;Am. J. Physiol. 214 1392–1402

    CAS  PubMed  Google Scholar 

  • Srivastava P N and Gupta P D 1961 Excretion of uric acid inPeriplaneta americana L;J. Insect Physiol. 6 163–167

    Article  CAS  Google Scholar 

  • Srivastava P N and Varshney R K 1966 Composition of the honeydew excreted by the lac insectKerria lacca (Homoptera: Coccoidea) I. Free amino acids;Entomol. Exp. Appl. 9 209–212

    CAS  Google Scholar 

  • Staddon B W 1955 The excretion and storage of ammonia by aquatic larvae ofSialis lutaria (Neuroptera);J. Exp. Biol. 32 84–94

    CAS  Google Scholar 

  • Staddon B W 1959 Nitrogen excretion in nymphs ofAeshna cyanea Müll (Odonata Anisoptera);J. Exp. Biol. 36 566–574

    CAS  Google Scholar 

  • Stobbart R H and Shaw J 1974 Salt and water balance: Excretion;Physiol. Insecta 5 362–446

    Google Scholar 

  • Stratakis E 1979 Ommochrome synthesis and kynurenic acid excretion in relation to metamorphosis and allatectomy in the stick insectCarausius morosus;Br. J. Insect Physiol. 25 925–929

    Article  CAS  Google Scholar 

  • Stratakis E 1980 Tryptophan metabolism during development of the stick insectCarausius morosus: tissue distribution and inter-relationships of metabolites of the kinurenine pathway;J. Comp. Physiol. B137 123–130

    CAS  Google Scholar 

  • Stratakis E and Egelhaaf A 1980 A quantitative study of the colour change during the pre-pupal differentiation ofEphestia kuhniella;Comp. Biochem. Physiol. B65 711–715

    Article  Google Scholar 

  • Strong F F 1965 Detection of lipids in the Honeydew of an Aphid;Nature (London) 205 1242

    Article  CAS  Google Scholar 

  • Sullivan D T, Bell L A, Paton D R and Sullivan M C 1980 Genetic and functional analysis of tryptophan transport in Malpighian tubules ofDrosophila;Biochem. Genet. 18 1109–1130

    Article  CAS  PubMed  Google Scholar 

  • Szarkowska L and Porembska Z 1959 Arginase inCelerio euphorbiae;Acta Biochim. Pol. 6 273–276

    CAS  PubMed  Google Scholar 

  • Takahashi H, Susumo Y, Suzaki Gingiro and Ohnishi Eiji 1969 Origin of oxalic acid in calcium oxalate crystals in the Malpighian tubules of the tent caterpillarMalacosoma Neustria testacea;J. Insect Physiol. 15 403–407

    Article  CAS  Google Scholar 

  • Tamura T and Sakate S 1975 Granules in the meconium of ogmutant ofBombyx mori;J. Seric. Sci. Jpn. 44 487–490

    Google Scholar 

  • Teigler D J and Arnott H J 1972Tissue Cell 4 173–185

    Article  CAS  PubMed  Google Scholar 

  • Terzian L A, Irreverre F and Stahler N 1957 A study of nitrogen patterns in the excreta and body tissues of adultAides egypti;J. Insect Physiol. 1 221–228

    Article  Google Scholar 

  • Thayer D W and Terzian L A 1971 Amino acid partition in excreta of ageing femaleAedes aegypti mosquitoes;J. Insect Physiol. 17 1731–1734

    Article  CAS  PubMed  Google Scholar 

  • Thomas K K and Nation J L 1966 RNA protein and uric acid content ofPeriplaneta americana (L) as influenced by Corpora allata during development;Biol. Bull. 130 442–449

    Article  CAS  Google Scholar 

  • Tillinghast E K and Janson C H 1971 Studies on the transition to ureotelism in the earthwormLumbricus terrestris (L);J. Exp. Zool. 177 1–8

    Article  CAS  PubMed  Google Scholar 

  • Todd A C 1944 On the development and hatching of the eggs ofHommerschmidtiella diesingi andLeidynema appendiculatum nematodes of roaches;Trans. Am. Microsc. Soc. 63 54–67

    Article  Google Scholar 

  • Tojo S 1971 Uric acid production in relation to protein metabolism in the silkwormBombyx mori during pupal-adult development;Insect Biochem. 1 249–263

    Article  CAS  Google Scholar 

  • Tojo S and Hirano C 1968 Uric acid production in larvae of the rice stem borer (Chilo suppressalis) in relation to post-diapause development;J. Insect Physiol. 14 1121–1133

    Article  CAS  Google Scholar 

  • Tojo S and Yushima T 1972 Uric acid and its metabolites in butterfly wings;J. Insect Physiol. 18 403–422

    Article  CAS  Google Scholar 

  • Truszkowski R and Chajkinowna S 1935 Nitrogen metabolism of certain invertebrates;Biochem. J. 29 2361–2365

    CAS  PubMed  Google Scholar 

  • Tsujita M and Sakurai S 1964 Relationship between chromogranules and uric acid in hypodermal cells of silkworm larvae;Proc. Jpn. Acad. 40 561–565

    CAS  Google Scholar 

  • Tsujita M and Sakurai S 1966 Chemical composition of chromogranules produced in the hypodermal cells of silkworm larvae;Proc. Jpn. Acad. 42 956–959

    CAS  Google Scholar 

  • Tsujita M and Sakurai S 1967 Pteridine granules in hypodermal cells of the silkworm larva causing nontransparency of larval skin;Proc. Jpn. Acad. 43 991–996

    CAS  Google Scholar 

  • Tsuyama S, Higashino T and Miyura K 1980 The localization of arginase in the blowflyAldrichina grahami during larval growth;Comp. Biochem. Physiol. B65 431–434

    Article  Google Scholar 

  • Umebachi Y and Yamada M 1964 Tryptophan and Tyrosine metabolism in the pupae of papilionid butterflies I. Accumulation of the bound form of kinurenine inPapilio xuthus;Annot. Zool. Jpn. 37 51–57

    Google Scholar 

  • Umebachi Y and Katayama M 1966 Tryptophan and Tyrosine metabolism in the pupae of papilionid butterflies II. The general pattern of tryptophan metabolism during the pupal stage ofPapilio xuthus;J. Insect Physiol. 12 1539–1547

    Article  CAS  Google Scholar 

  • Ursprung H and Hadorn R 1961 Xanthine dehydrogenase in Organen vonDrosophila melanogaster;Experientia 17 230–231

    Article  CAS  PubMed  Google Scholar 

  • Wagner R P and Mitchell H K 1948 Enzymic assay for studying the nutrition ofDrosophila melanogaster, Arch. Biochem. 17 87–96

    CAS  PubMed  Google Scholar 

  • Wall B J and Oschman J L 1970 Water and solute uptake by the rectal pads ofPeriplaneta americana;Am. J. Physiol. 218 1208–1215

    CAS  PubMed  Google Scholar 

  • Wang C M and Patton R L 1969 Nitrogenous compounds in the haemolymph of the cricketAcheta domestica;J. Insect. Physiol. 15 543–548

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse D F 1952 Studies on the digestion of wool by insects IV. Absorption and elimination of metals by lepidopterous larvae with special reference to the clothes mothTineola biselliella (Humm);Aust. J. Sci. Res. B5 143–168

    CAS  Google Scholar 

  • Watt W B 1967 Pteridine biosynthesis in the butterflyColias eurytheme;J. Biol. Chem. 242 565–572

    CAS  PubMed  Google Scholar 

  • Wehner R, Gartenman G and Jungi T 1969 Contrast perception in Eye Colour Mutants ofDrosophila melanogaster andDrosophila subobscura;J. Insect Physiol. 15 815–823

    Article  Google Scholar 

  • Weinland E 1906 Über die Ausscheidung von Ammoniak durch die Larven vonCalliphora und uber eine Beziehung dieser Tatsache zu dem Entwicklungstadium dieser Tiere;Z. Biol. 47 232–250

    Google Scholar 

  • Wessing A and Bonse A 1966 Natur und Buildung des rotten Farbstoffes in den Nierentubuli der Mutante ‘red’ vonDrosophila melanogaster;Z. Naturforsch. B21 1219–1223

    CAS  Google Scholar 

  • Wessing A and Eichelberg D 1968 Die fluoreszierenden Stoffe aus den Malpighischen-Gefässen der Wildform und verschiedener Augenfarben mutanten vonDrosophila melanogaster, Z. Naturforsch. B23 376–386

    CAS  Google Scholar 

  • Wessing A and Eichelberg D 1978 Malpighian tubules rectal papillae and excretion;genet. biol. Drosophila 20 1–42

    Google Scholar 

  • Whitmore E and Gilbert L I 1972 Haemolymph lipoprotein transport of juvenile hormone;J. Insect Physiol. 18 1153–1167

    Article  CAS  PubMed  Google Scholar 

  • Wieland H and Schopf C 1925 Über den gelben Flügelfarbstoff des citronenfalters (Gonepteryx rhamni);Ber. Dtsch. Chem. Ges. B58 2178–2183

    Article  Google Scholar 

  • Wieser W 1972a O/N ratios of terrestrial isopods at two temperatures;Comp. Biochem. Physiol. A43 859–868

    Article  CAS  Google Scholar 

  • Wieser W 1972b Oxygen consumption and ammonia excretion inLigia beaudiana M E;Comp. Biochem. Physiol. A43 869–876

    Article  CAS  Google Scholar 

  • Wieser W and Schweizer G 1970 A re-examination of the excretion of nitrogen by terrestrial isopods;J. Exp. Biol. 52 267–274

    Google Scholar 

  • Wieser W, Schweizer G and Hartenstein R 1969 Patterns in the release of gaseous ammonia by terrestrial isopods;Oecologia 3 390–400

    Article  Google Scholar 

  • Wigglesworth V B 1931 The physiology of excretion in a blood-sucking insectRhodnius prolixus (Hemiptera Reduviidae);J. Exp. Biol. 8 411–451

    CAS  Google Scholar 

  • Wigglesworth V B 1943 Biliverdin in pericardial cells: Rhodnius Hem;Proc. R. Soc. B 131 313–339

    Article  CAS  Google Scholar 

  • Wigglesworth V B 1950The principles of insect physiology (London: Methuen)

    Google Scholar 

  • Wigglesworth V B 1953The principles of insect physiology (London: Methuen)

    Google Scholar 

  • Wigglesworth V B 1972The principles of insect physiology 7th edition (London: Chapman and Hall)

    Google Scholar 

  • Wolf J P and Ewart W H 1955 Carbohydrate composition of the honeydew ofCoccus hesperidum L; Evidence for the existence of two new oligosaccharides;Arch. Biochem. Biophys. 38 365–372

    Article  Google Scholar 

  • Wyatt G R 1961 The biochemistry of insect haemolymph;Annu. Rev. Entomol. 6 75–102

    Article  CAS  Google Scholar 

  • Zandee D L, Nijkamp H J, Roosheroe L, De Waart J, Sedee P D J W and Vonk H J 1958 Transamination in invertebrates;Arch. Int. Physiol. Biochim. 66 220–227

    Article  CAS  PubMed  Google Scholar 

  • Ziegler I 1961 Genetic aspects of ommochrome and pterin pigments;Adv. Genet. 10 349–403

    Article  CAS  Google Scholar 

  • Ziegler I and Harmsen R 1969 The biology of pteridines in insects;Adv. Insect Physiol. 6 139–203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, R. Nitrogen excretion in insects. Proc. Indian Acad. Sci. (Anim. Sci.) 97, 379–415 (1988). https://doi.org/10.1007/BF03179946

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179946

Keywords

Navigation