Skip to main content
Log in

Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Surface characterization of materials has been considered critical in the development of biomaterials, as many unfavorable responses from the body occur at the interface between a material and the body component. The contact angle measurement is one means to characterize the surface properties and to correlate them to the biocompatibility of materials. In this paper, surface characteristics of silk fibroin/S-carboxymethyl kerateine, representative fibrous proteins, were investigated by contact angle measurements and ESCA. The biocompatibility of the blends was evaluated based on minimal interfacial free energy concept, and compared with other potential biomaterials. It was also hypothesized that the enhanced surface polarity of the blends was generated from the conformational transition of proteins. This approach to evaluate the biocompatibility of materials based on surface characteristics may find wide utility in many biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. van Delden, G. H. M. Engbers, and J. Feijen,J. Biomat. Sci., Polym. Ed.,7, 727 (1996).

    Article  Google Scholar 

  2. S. Clarke, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, V. O’Byrne, A. L. Lewis, and J. Russell,Langmuir,16, 5116 (2000).

    Article  CAS  Google Scholar 

  3. K. Kataoka, T. Tsuruta, T. Akaike, and Y. Sakurai,Makromol. Chem.,181, 1263 (1980).

    Article  Google Scholar 

  4. J. H. Elam and H. Nygren,Biomaterials,13, 3 (1992).

    Article  CAS  Google Scholar 

  5. D. Y. Kwok and A. W. Neumann,Adv. Colloid Interface Sci.,81, 167 (1999).

    Article  CAS  Google Scholar 

  6. D. Byrom, “Biomaterials — Novel Materials from Biological Sources”, Stockton Press, New York, 1991.

    Google Scholar 

  7. T. Huynh, G. Abraham, J. Murray, K. Brockbank, P. O. Hagen, and S. Sullivan,Nature Biotechnol.,17, 1083 (1999).

    Article  CAS  Google Scholar 

  8. K. Y. Lee, W. S. Ha, and W. H. Park,Biomaterials,16, 1211 (1995).

    Article  CAS  Google Scholar 

  9. J. K. F. Suh and H. W. T. Matthew,Biomaterials,21, 2589 (2000).

    Article  CAS  Google Scholar 

  10. N. Minoura, M. Tsukada, and M. Nagura,Biomaterials,11, 430 (1990).

    Article  CAS  Google Scholar 

  11. M. Santin, A. Motta, G. Freddi, and M. Cannas,J. Biomed. Mater. Res.,46, 382 (1999).

    Article  CAS  Google Scholar 

  12. K. Yamaura, N. Kuranuki, M. Suzuki, T. Tanigami, and S. Matsuzawa,J. Appl. Polym. Sci.,41, 2409 (1990).

    Article  CAS  Google Scholar 

  13. G. Freddi, R. Romano, M. R. Massafra, and M. Tsukada,J. Appl. Polym. Sci.,56, 1537 (1995).

    Article  CAS  Google Scholar 

  14. S. J. Park, K. Y. Lee, W. S. Ha, and S. Y. Park,J. Appl. Polym. Sci.,74, 2571 (1999).

    Article  CAS  Google Scholar 

  15. H. Ito, T. Miyamoto, H. Inagaki, and Y. Noishiki,Kobunshi Ronbunshu,39, 249 (1982).

    CAS  Google Scholar 

  16. K. Yamauchi, M. Maniwa, and T. Mori,J. Biomat. Sci., Polym. Ed.,9, 259 (1998).

    Article  CAS  Google Scholar 

  17. Y. Noishiki, H. Ito, T. Miyamoto, and H. Inagaki,Kobunshi Ronbunshu,39, 221 (1982).

    CAS  Google Scholar 

  18. Y. J. Kim, K. Kono, and T. Takagishi,Text. Res. J.,61, 476 (1991).

    Article  CAS  Google Scholar 

  19. K. Y. Lee, S. J. Kong, W. H. Park, W. S. Ha, and I. C. Kwon,J. Biomater. Sci., Polym. Ed.,9, 905 (1998).

    Article  CAS  Google Scholar 

  20. W. C. Hamilton,J. Colloid Interface Sci.,47, 672 (1974).

    Article  CAS  Google Scholar 

  21. J. D. Andrade, S. M. Ma, R. N. King, and D. E. Gregonis,J. Colloid Interface Sci.,72, 488 (1979).

    Article  CAS  Google Scholar 

  22. J. D. Andrade,Med. Instrum.,7, 110 (1973).

    CAS  Google Scholar 

  23. P. Esposito, I. Colombo, and M. Lovrecich,Biomaterials,15, 177 (1994).

    Article  CAS  Google Scholar 

  24. K. Y. Lee and D. J. Mooney,Chem. Rev., in press.

  25. K. Y. Lee, M. C. Peters, K. W. Anderson, and D. J. Mooney,Nature,408, 998 (2000).

    Article  CAS  Google Scholar 

  26. A. W. Neumann, M. A. Moscarello, W. Zingg, O. S. Hum, and S. K. Chang,J. Polym. Sci., Polym. Symp.,66, 391 (1981).

    Article  Google Scholar 

  27. K. Y. Lee and W. S. Ha,Polymer,40, 4131 (1999).

    Article  CAS  Google Scholar 

  28. M. Tsukada,J. Polym. Sci., Polym. Phys.,24, 1227 (1986).

    Article  CAS  Google Scholar 

  29. W. I. Cha and S. H. Hyon,Makromol. Chem.,194, 2433 (1993).

    Article  CAS  Google Scholar 

  30. H. Yoshimizu and T. Asakura,J. Appl. Polym. Sci.,40, 1745 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuen Yong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.Y. Characterization of silk fibroin/S-carboxymethyl kerateine surfaces: Evaluation of biocompatibility by contact angle measurements. Fibers Polym 2, 71–74 (2001). https://doi.org/10.1007/BF02875261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02875261

Keywords

Navigation