Israel Journal of Mathematics

, Volume 35, Issue 4, pp 301–310

Interval exchange transformations and some special flows are not mixing

Authors

  • Anatole Katok
    • Department of MathematicsUniversity of Maryland
Article

DOI: 10.1007/BF02760655

Cite this article as:
Katok, A. Israel J. Math. (1980) 35: 301. doi:10.1007/BF02760655

Abstract

An interval exchange transformation (I.E.T.) is a map of an interval into itself which is one-to-one and continuous except for a finite set of points and preserves Lebesgue measure. We prove that any I.E.T. is not mixing with respect to any Borel invariant measure. The same is true for any special flow constructed by any I.E.T. and any “roof” function of bounded variation. As an application of the last result we deduce that in any polygon with the angles commensurable with π the billiard flow is not mixing on two-dimensional invariant manifolds.

Copyright information

© The Weizmann Science Press of Israel 1980