Skip to main content
Log in

The role of temperature, stress, and other factors in the neurotoxicity of the substituted amphetamines 3,4-methylenedioxymethamphetamine and fenfluramine

  • Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amphetamines (AMPs) can cause long-term depletions in striatal dopamine (DA) and serotonin (5-HT), and these decrements are often accepted asprima facie evidence of AMP-induced damage to the dopaminergic and serotonergic projections to striatum. Rarely are indices linked to neural damage used to evaluate the neurotoxicity, of the AMPs. Here, were determined the potential neurotoxic effects of two substituted AMPs,d-methylenedioxymethamphetamine (d-MDMA), andd-fenfluramine (d-FEN) in group-housed female C57BL6/J mice. Astrogliosis, assessed by quantification of glial fibrillary acidic protein (GFAP), was the main indicator of d-MDMA-induced neural damage. Assays of tyrosine hydroxylase (TH), DA, and 5-HT were used to determine effects on DA and 5-HT systems. Since AMPs are noted for both their stimulatory and hyperthermia-inducing properties, activity, as well as core temperature, was monitored in several experiments. To extend the generality of our findings, these same end points were examined in singly housed female C57BL6/J mice in and group-housed male C57BL6/J or female B6C3F1 mice after treatment with d-MDMA. Mice, received either d-MDMA (20 mg/kg) singly housed mice received dosages of 20, 30, or 40 mg/kg) or d-FEN (25 mg/kg) every 2 h for a total of four sc injections. d-MDMA caused hyperthermia, whereas d-FEN induced hypothermia. d-MDMA cause a large (300%) increase in striatal GFAP that resolved by 3 wk and a 50–75% decrease in TH and DA that was still apparent at 3 wk, d-FEN did not affect any parameters in striatum. d-MDMA is a striatal dopaminergic neurotoxicant in both male and female C57BL6/mice, as evidence by astrogliosis and depletions of DA in this area in both sexes. The greater lethality to males suggests they may be more sensitive, at least to the general toxicity of d-MDMA, than females. d-MDMA (20 mg/kg) induced the same degree of damage whether mice were housed singly or in groups. Higher dosages in singly housed mice induced greater lethality, but not greater neurotoxicity. d-MDMA was also effective in inducing striatal damage in mice of the B6C3F1 strain. Significant increases in activity were induced by d-MDMA, and these increases were not blocked by pretreatment with MK-801, despite the profound lowering of body temperature induced by this combination. A lowering of body temperature, whether by a 15°C ambient temperature (approx 2°C drop), pretreatment with MK-801 (1.0 mg/kg prior to the first and third d-MDMA injections; approx 5–6°C drop) or restraint (approx 5–6°C drop), was effective in blocking the neurotoxicity of d-MDMA in both C57BL6/J and B6C3F1. The stimulatory effects of d-MDMA appeared to have little impact on the neurotoxicity induced by d-MDMA or the protection conferred by MK-801. These data suggest that in the mouse, the neurotoxic effects of d-MDMA, and most likely other AMPs, are linked to an effect on body temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askew B. M. (1962) Hyperpyrexia as a contributory factor in the toxicity of amphetamine to aggregated mice.Br. J. Pharmacol. 19, 245–257.

    CAS  Google Scholar 

  • Badiani A., Simona C., and Puglisi-Allegra S. (1992) Chronic stress induces strain-dependent sensitization to the behavioral effects of amphetamine in the mouse.Pharmacol. Biochem. Behav. 43, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G., Yeh S. Y., O’Hearn E., Molliver M. E., Kuhar M. J., and de Souza E. B. (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylendioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement [3H]paroxetine-labeled serotonin uptake sites.J. Pharmacol. Exp. Ther. 242, 911–916.

    PubMed  CAS  Google Scholar 

  • Becker J. B., Robinson T. E., and Lorenz D. A. (1982) Sex differences and estrous cycle variations in amphetamine-elicited rotational behavior.Eur. J. Pharmacol. 80, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Boehme R. E. and Ciaranello R. D. (1982) Genetic control of dopamine and serotonin receptors in brain regions in inbred mice.Brain Res. 266, 51–65.

    Article  Google Scholar 

  • Bowyer J. F., Tank A. W., Newport G. D., Slikker W. Jr., Ali S. F., and Holson R. R. (1992) The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in rat striatum.J. Pharmacol. Exp. Ther. 260, 817–824.

    PubMed  CAS  Google Scholar 

  • Bowyer J. F., Davies D. L., Schmued L., Broening H. W., Newport G. D., Slikker W. Jr., and Holson R. R. (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity.J. Pharmacol. Exp. Ther. 268, 1571–1580.

    PubMed  CAS  Google Scholar 

  • Bushnell P. J. (1986) Differential effects of amphetamine and related compounds on locomotor activity and metabolic rate in mice.Pharmacol. Biochem. Behav. 25, 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Busto R. W., Dietrich W. D., Globus M. Y.-T., and Ginsberg M. D. (1989) The importance of brain temperature in cerebral ischemic injury.Stroke 20, 1113,1114.

    PubMed  CAS  Google Scholar 

  • Chance M. R. A. (1946) Aggregation as a factor influencing the toxicity of sympathomimetic amines in mice.J. Pharmacol. Exp. Ther. 87, 214–219.

    CAS  Google Scholar 

  • Commins D. L., Vosmer G., Virus R. M., Woolverton W. L., Schuster C. R., and Seiden L. A. (1987) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain.J. Pharmacol. Exp. Ther. 241, 338–345.

    PubMed  CAS  Google Scholar 

  • Fay T. (1959) Early experiences with local and generalized refrigeration of human brain.J. Neurosurg. 16, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Fuller R. W. (1978) Neurochemical effects of serotonin neurotoxins: an introduction, inSerotonin Neurotoxins (Jacoby J. H. and Lytle L. D., eds.), New York Academy of Science, New York, pp. 178–181.

    Google Scholar 

  • Gold L. H., Koob G. F., and Geyer M. A. (1988) Stimulant and hallucinogenic behavioral profiles of 3,4-methylenedioxymethamphetamine and n-ethyl-3,4-methylenedioxyamphetamine in rats.J. Pharmacol. Exp. Ther. 247, 547–555.

    PubMed  CAS  Google Scholar 

  • Gordon C. J., Watkinson W. P., O’Callaghan J. P., and Miller D. B. (1991) Effects of 3,4-methyene-dioxymethamphetamine on autonomic thermoregulatory responses of the the rat.Pharmacol. Biochem. Behav. 38, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila R. E., Hess A., and Duvoisin R. C. (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice.Science 224, 1451–1453.

    Article  PubMed  CAS  Google Scholar 

  • Herman J.-P., Stinus M., and Le Moal M. (1984) Repeated stress increases locomotor response to amphetamine.Psychopharmacology 84, 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Hohn R. and Lasagna L. (1960) Effects of aggregation and temperature on amphetamine toxicity in mice.Psychopharmacologia 1, 210–220.

    Article  Google Scholar 

  • Kleven M. S. and Seiden L. S. (1989) D-, L-, and DL-fenfluramine cause long-lasting depletions of serotonin in rat brain.Brain Res. 505, 351–353.

    Article  PubMed  CAS  Google Scholar 

  • Lee C.-M., Javitch J. A., and Snyder S. H. (1983) Recognition sites for norepinephrine uptake: regulation by neurotransmitter.Science 220, 626–629.

    Article  PubMed  CAS  Google Scholar 

  • Lesch K. P., Aulakh C. S., Wolozin B. L., Tolliver T. J., Hill J. L., and Murphy D. L. (1993) Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants.Mol. Brain Res. 17, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Logan B. J., Laverty L., Sanderson W. D., and Yee Y. B. (1988) Differences between rats and mice in MDMA (methylenedioxymethamphetamine) neurotoxicity.Eur. J. Pharmacol. 152, 227–234.

    Article  PubMed  CAS  Google Scholar 

  • Miller D. B. and O’Callaghan J. P. (1993) The interactions of MK-801 with the amphetamine analogues d-methamphetamine d-METH, 3,4-methylendioxymethamphetamine (d-MDMA) or d-fenfluramine (d-FEN): neural damage and neural protection.Ann. NY Acad. Sci. 679, 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Miller D. B. and O’Callaghan J. P. (1994) Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.J. Pharmacol. Exp. Ther. 270, 752–760.

    PubMed  CAS  Google Scholar 

  • Miller D. B., Jensen K. F., and O’Callaghan J. P. (1991) Effects of methylenedioxymethamphetamine (MDMA) and fenfluramine (FFA) on motor activity, body temperature and weight— characteristics of acute and repeated dosing.Soc. Neurosci. Abstr. 17, Part 2, 1428.

    Google Scholar 

  • O’Callaghan J. P. (1991) Quantification of glial fibrillary acidic protein: comparison of slotimmunobinding assays with a novel sandwich ELISA.Neurotoxicol. Teratol. 13, 275–281.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan J. P. (1993) Quantitative features of reactive gliosis following toxicant-induced damage of the CNS.Ann. NY Acad. Sci. 679, 195–210.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan J. P. and Miller D. B. (1993) Quantification of reactive gliosis as an approach to neurotoxicity assessment, inAssessing Neurotoxicity of Drugs of Abuse, National Institute on Drug Abuse Monograph 136 (Erinoff L., ed.), US Government Printing Office, Washington, DC, pp. 188–212.

    Google Scholar 

  • O’Callaghan J. P. and Miller D. B. (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse.J. Pharmacol. Exp. Ther. 270, 741–751.

    PubMed  CAS  Google Scholar 

  • Pechnick R. N., Wong C. A., George R., Thurkauf J., and Rice K. C. (1989) Comparison of the effects of the acute administration of dexoxadrol, levoxadrol, MK-801 and phencyclidine on body temperature in the rat.Neuropharmacology 28, 829–835.

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte G., Bryan G., Strauss L., Seiden L., and Schuster C. (1985) Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals.Science 229, 986–988.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute, Inc. (1986) SAS User’s Guide: Statistics.

  • Schmidt C. J. (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine.J. Pharmacol. Exp. Ther. 240, 1–7.

    PubMed  CAS  Google Scholar 

  • Severson J. A., Randall P. K., and Finch E. E. (1981) Genotypic influences on striatal dopaminergic regulation in mice.Brain Res. 210, 201–215.

    Article  PubMed  CAS  Google Scholar 

  • Smith P. K., Kronh R. I., hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimot E. K., Oson B. J., and Klenk D. C. (1985) Measurement of protein using bicinchoninic acid.Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla P. K. and Heikkila R. E. (1988) Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice.Prog. Neuro. Biol. Psychiat. 12, 345–352.

    Article  CAS  Google Scholar 

  • Sonsalla P. K., Nicklas W. J., and Heikkila R. E. (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.Science 243, 398–400.

    Article  PubMed  CAS  Google Scholar 

  • Stone D. M., Hanson G. R., and Gibb J. W (1987) Differences in the central serotonergic effects of methylenedioxymethamphetamine (MDMA) in mice and rats.Neuropharmacology 26, 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Wagner J., Ricaurte G. A., Seiden L. S., Schuster C. R., Miller R. J., and Westely J. (1980) Long-lasting depletion of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine.Brain Res. 181, 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Widmann R., Miyazawa A., and Hossmann K.-A. (1993) Protective effect of hypothermia on hippocampal injury after 30 minutes of forebrain ischemia in rats is mediated by postischemic recovery of protein synthesis.J. Neurochem. 61, 200–209.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y. W. and Laverty R. (1993) Neurotoxic effects of MDMA in different strains of mice.Proc. Univ. Otago Med. Sch. 71, 5,6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.B., O’Callaghan, J.P. The role of temperature, stress, and other factors in the neurotoxicity of the substituted amphetamines 3,4-methylenedioxymethamphetamine and fenfluramine. Mol Neurobiol 11, 177–192 (1995). https://doi.org/10.1007/BF02740694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740694

Index Entries

Navigation