Skip to main content
Log in

Partitioning of methyl internal rotational barrier energy of thioacetaldehyde

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The nature of methyl internal rotational barrier in thioacetaldehyde has been investigated by relaxation effect, natural bond orbital (NBO) analysis and Pauling exchange interactions. The true experimental barrier can be obtained by considering fully relaxed rotation. Nuclear-electron attraction term is a barrier forming term in the fully relaxed rotation, but it appears as an antibarrier for rigid rotation. It is seen that during methyl rotation, the torsional mode is coupled with the aldehydic hydrogen out-of-plane wagging motion. Natural bond orbital analysis shows that the principal barrier forming term originates from the C-C bond. The lengthening of the C-C bond is explained by considering charge transfer interaction between several bonding and antibonding orbitals in the C-C bond region, which leads to higher bonding overlap for the eclipsed conformer compared to the staggered conformer. S-C(σ)/Cme-Hp and C-Hald/Cme-Hop interactions appear to be the main barrier-forming Pauling exchange terms but have less contribution to make to the barrier compared to the C-C bond interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groner P, Sullivan J F and Durig J R 1981Vibrational spectra and structure (Amsterdam: Elsevier) vol 9, pp 405–496

    Google Scholar 

  2. Goodman L and Pophristic V 1998The encyclopedia of computational chemistry (John Wiley & Sons: Chichester) vol. 4, pp 2525–2541; Goodman L, Pophristic V and Weinhold FAcc. Chem. Res. (accepted)

    Google Scholar 

  3. Lister D G, MacDonald J N and Owen N L 1978Internal rotation and inversion: An introduction to large amplitude motions in molecules (New York: Academic Press)

    Google Scholar 

  4. Veillard A 1974 InInternal rotation in molecules (New York: John Wiley and Sons) pp 385–421

    Google Scholar 

  5. Goodman L and Gu H 1998J. Chem. Phys. 109 72

    Article  CAS  Google Scholar 

  6. Goodman L, Gu H and Pophristic V 1999J. Chem. Phys. 110 4268

    Article  CAS  Google Scholar 

  7. Goodman L and Pophristic V 1996Chem. Phys. Lett. 259 287

    Article  Google Scholar 

  8. Pophristic V, Goodman L and Guchhait N 1996J. Phys. Chem. 101 92

    Google Scholar 

  9. Thakur S N, Guo D, Kundu T and Goodman L 1992Chem. Phys. Lett. 199 335;PhilisJGand Goodman L 1993J. Chem. Phys. 98 3795

    Article  CAS  Google Scholar 

  10. Kleiner I, Hougen J T, Suenram R D, Lovas F J and Godefroid M 1991J. Mol. Spectrosc. 148 38

    Article  CAS  Google Scholar 

  11. Belov S P, Tretyakov M Yu, Kleiner I and Hougen T J 1993J. Mol. Spectrosc. 160 61

    Article  CAS  Google Scholar 

  12. Leszcynski J and Goodman L 1993J. Chem. Phys. 99 4867; Goodman L, Leszczynski J and Kundu T 1994J. Chem. Phys. 100 1274

    Article  Google Scholar 

  13. Hehre W J, Pople J A and Devaquet A J P 1976J. Am. Chem. Phys. 98 664

    CAS  Google Scholar 

  14. Sovers O J, Kern C W, Pitzer R M and Karplus M 1968J. Chem. Phys. 49 2592; PitzerRM 1983Acc. Chem. Res. 16 207; Jorgensen W L and Allen L C 1971J. Am. Chem. Soc. 93 567; Munoz-caro C, Nino A and Moule D C 1994Theor. Chim. Acta. 88 299; Hadad C M, Foresman J B and Wiberg K B 1993J. Phys. Chem. 94 4293

    Article  CAS  Google Scholar 

  15. Goodman L, Kundu T and Leszczynski J 1995J. Am. Chem. Soc. 117 2082

    Article  CAS  Google Scholar 

  16. Guo D and Goodman L 1996J. Phys. Chem. 100 12540

    Article  Google Scholar 

  17. Kroto H W and Landsberg B M 1976J. Mol. Spectrosc. 62 346

    Article  CAS  Google Scholar 

  18. Judge R H, Moule D C, Bruno A E and Steer R P 1983Chem. Phys. Lett. 102 385

    Article  CAS  Google Scholar 

  19. Paone S, Moule D C, Bruno A E and Steer R P 1984J. Mol. Spectrosc. 107 1

    Article  CAS  Google Scholar 

  20. Moule D C, Smeyers Y G, Senenet M L, Clouthier D J, Karolczak J and Judge R H 1991J. Chem. Phys. 95 3137

    Article  CAS  Google Scholar 

  21. Judge R H, Moule D C, Bruno A E and Steer R P 1987J. Chem. Phys. 87 60; Smeyers Y G, Nino A and Bellido M N 1988Theor. Chim. Acta 74 259

    Article  CAS  Google Scholar 

  22. Smeyers Y G, Nino A and Moule D C 1990J. Chem. Phys. 93 5786

    Article  CAS  Google Scholar 

  23. Ab-initio calculation program, Gaussian 94, Frisch M Jet al Gaussian Inc., Pittsburgh PA, 1995

  24. Reed A E and Weihold F 1983J. Chem. Phys. 78 4066

    Article  CAS  Google Scholar 

  25. NBO 4.0. Glendening E D, Badenhoop J K, Reed A E, Carpenter J E and Weinhold F 1996 Theoretical Chemistry Institute, University of Wisconsin, Madison

  26. Foster J P and Weinhold F 1980J. Am. Chem. Soc. 102 7211

    Article  CAS  Google Scholar 

  27. Badenhoop J K and Weihold F 1997J. Chem. Phys. 107 5406; Badenhoop J K and Weihold F 1997J. Chem. Phys. 107 5422

    Article  CAS  Google Scholar 

  28. Guchhait N (unpublished results)

  29. Reed A E and Weinhold F 1983J. Chem. Phys. 78 4066

    Article  CAS  Google Scholar 

  30. Reed A E, Curtiss L A and Weinhold F 1988Chem. Rev. 88 899

    Article  CAS  Google Scholar 

  31. Reed A E and Weinhold F 1991Isr. J. Chem. 31 277

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guchhait, N. Partitioning of methyl internal rotational barrier energy of thioacetaldehyde. J Chem Sci 114, 61–74 (2002). https://doi.org/10.1007/BF02709982

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02709982

Keywords

Navigation