Skip to main content
Log in

Benzyl alcohol-ammonia (1:1) cluster structure investigated by combined IR-UV double resonance spectroscopy in jet andab initio calculation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition,ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d,p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31G level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ebata T, Fujii A and Mikami N 1998Int. Rev. Phy. Chem. 17 331

    Article  CAS  Google Scholar 

  2. Hockridge M R and Robertson E G 1999J. Phys. Chem. A103 3618

    Google Scholar 

  3. Matsuda Y, Ebata T and Mikami N 1999J. Chem. Phys. 110 8397

    Article  CAS  Google Scholar 

  4. Liu K, Brown M G and Saykally R J 1997J. Phys. Chem. A101 8995, and references therein

    Google Scholar 

  5. Stanley R J and Castleman A W Jr. 1993J. Chem. Phys. 98 796

    Article  CAS  Google Scholar 

  6. Hockridge M R, Knight S M, Robertson E G, Simons J P, McCombie J and Walker M 1999Phys. Chem. Chem. Phys. 1 407, and references therein

    Article  CAS  Google Scholar 

  7. Pribble R N and Zwier T S 1994Science 265 75

    Article  CAS  Google Scholar 

  8. Matsumoto Y, Ebata T and Mikami T 1998J. Chem. Phys. 109 6303

    Article  CAS  Google Scholar 

  9. Helm R M, Vogel H P and Neusser H J 1997J. Chem. Phys. 108 4496

    Article  Google Scholar 

  10. Schmitt M, Jacoby Ch and Kleinermanns K 1997J. Chem. Phys. 108 4486

    Article  Google Scholar 

  11. Ebata T, Nagao K and Mikami N 1997Chem. Phys. 231 199

    Article  Google Scholar 

  12. Ishikawa S, Ebata T, Tanabe S and Mikami N 1999J. Chem. Phys. 110 9504

    Article  CAS  Google Scholar 

  13. Fujii A, Miyazaki M, Ebata T and Mikami N 1999J. Chem. Phys. 110 11125

    Article  CAS  Google Scholar 

  14. Maxton P M, Schaeffer M W and Felker P M 1995Chem. Phys. Lett. 241 603

    Article  CAS  Google Scholar 

  15. Matsumoto Y, Ebata T and Mikami N 2001J. Mol. Struct. (in press)

  16. Yamamoto R, Ishikawa S, Ebata T and Mikami N 2000J. Raman Spectrosc. 31 295

    Article  CAS  Google Scholar 

  17. Pribble R N and Zwier T S 1994Faraday Discuss. 97 229

    Article  CAS  Google Scholar 

  18. Mikami N 1994Bull. Chem. Soc. Jpn. 68 683

    Article  Google Scholar 

  19. Iwasaki A, Fujii A, Watanabe T, Ebata T and Mikami N 1996J. Chem. Phys. 100 16053

    Article  CAS  Google Scholar 

  20. Knof S, Strassmair H, Engel J, Rothe M and Steffen K D 1972Biopolymers 11 731

    Article  CAS  Google Scholar 

  21. Matheu M I, Echarri R and Castillon S 1993Tetrahedron Lett. 34 2361

    Article  CAS  Google Scholar 

  22. Faubel M, Steiner B and Toennies J P 1997J. Chem. Phys. 106 9013

    Article  CAS  Google Scholar 

  23. Oki M and Iwamura H 1959Bull. Chem. Soc. Jpn. 32 950

    Article  CAS  Google Scholar 

  24. Hehre W J, Radom L and Pople J A 1972J. Am. Chem. Soc. 39 1496, and references therein

    Article  Google Scholar 

  25. Im H S, Bernstein E R, Secor H V and Seeman J I 1991J. Am. Chem. Soc. 113 4422

    Article  CAS  Google Scholar 

  26. Guchhait N, Ebata T and Mikami N 1999J. Am. Chem. Soc. 121 5705

    Article  CAS  Google Scholar 

  27. Guchhait N, Ebata T and Mikami N 1999J. Chem. Phys. 111 8438

    Article  CAS  Google Scholar 

  28. Mons M, Robertson E G and Simons J P 2000J. Phys. Chem. A104 1430

    Google Scholar 

  29. Frisch M Jet al 1995Ab initio calculation program Gaussian 94 (Rev. D.4), Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  30. Li S and Bernstein E R 1992J. Chem. Phys. 97 7383

    Article  CAS  Google Scholar 

  31. Schmitt M, Jacoby Ch, Gerhards M, Unterberg C, Roth W and Kleinermanns K 2000J. Chem. Phys. 113 2995

    Article  CAS  Google Scholar 

  32. Schutz M, Burgi T and Leutwyler S 1992J. Mol. Struct. (Theochem) 276 117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guchhait, N. Benzyl alcohol-ammonia (1:1) cluster structure investigated by combined IR-UV double resonance spectroscopy in jet andab initio calculation. J Chem Sci 113, 235–244 (2001). https://doi.org/10.1007/BF02704073

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704073

Keywords

Navigation