Skip to main content
Log in

Fatty acid specificity in the inhibition of cell proliferation and its relationship to lipid peroxidation and prostaglandin biosynthesis

  • Published:
Lipids

Abstract

Primary cultures of smooth muscle cells were established from the medial layer of guinea pig aorta. Cells at passage level 4 were treated with different series of fatty acids belonging to the n-9, n-6 and n-3 families. Lipid peroxidation was measured by the thiobarbituric acid assay and prostaglandin biosynthesis was measured by the radioimmunoassay of PGE and 6-keto-PGF. Cell proliferation was estimated from the total cell number of cultures seeded at low density. 18∶1(n-9) did not form lipid peroxides and this fatty acid stimulated cell proliferation. All fatty acids which generated lipid peroxides inhibited cell proliferation, but inhibition was correlated with the degree of lipid peroxidation only in the n-9 fatty acid family. 22∶4(n-6) and 22∶6(n-3) inhibited prostaglandin biosynthesis. 18∶2(n-6), 18∶2(n-9), 18∶3(n-3), 20∶2(n-9), 20∶3(n-3) and 20∶5(n-3) had no effect on prostaglandin biosynthesis. 18∶3(n-6), 20∶3(n-6) and 20∶4(n-6) generated prostaglandins. 20∶3(n-9) generated metabolites with prostaglandin immunoreactivity. The inhibition of cell proliferation did not correlate with enhanced or inhibited prostaglandin synthesis. The inhibition of cell proliferation was related to the structures of the different polyunsaturated fatty acid families decreasing in the order n-9>n-6>n-3. Eicosatrienoic acids were the most effective inhibitors of cell proliferation in each fatty acid family and 20∶3(n-9) was the most potent eicosatrienoic acid. These data show that specific as yet unrecognized products of fatty acid metabolism are responsible for the inhibition of cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huttner, J.J., Gwebu, E.T., Panganamala, R.V., Milo, G.E., Cornwell, D.G., Sharma, H.M., and Geer, J.C. (1977) Science 197, 289–291.

    Article  PubMed  CAS  Google Scholar 

  2. Huttner, J.J., Milo, G.E., Panganamala, R.V., and Cornwell, D.G. (1978) In Vitro 14, 854–859.

    PubMed  CAS  Google Scholar 

  3. Cornwell, D.G., Huttner, J.J., Milo, G.E., Panganamala, R.V., Sharma, H.M., and Geer, J.C. (1979) Lipids 14, 194–207.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, J.S., Gavino, V.C., Ackerman, G.A., Sharma, H.M., Milo, G.E., Geer, J.C., and Cornwell, D.G. (1980) Lab. Invest. 42, 495–506.

    PubMed  CAS  Google Scholar 

  5. Gavino, V.C., Miller, J.S., Ikharebha, S.O., Milo, G.E., and Cornwell, D.G. (1981) J. Lipid Res. 22, 763–769.

    PubMed  CAS  Google Scholar 

  6. Gavino, V.C., Miller, J.S., Dillman, J.M., Milo, G.E., and Cornwell, D.G. (1981) Prog. Lipid Res. 20, 323–325.

    Article  PubMed  CAS  Google Scholar 

  7. Liepkalns, V.C., Icard-Liepkalns, C., and Cornwell, D.G. (1982) Cancer Lett. 15, 173–178.

    Article  PubMed  CAS  Google Scholar 

  8. Bettger, W.J., and Ham, R.G. (1981) Prog. Lipid Res. 20, 265–268.

    Article  PubMed  CAS  Google Scholar 

  9. Sprecher, H. (1978) Prog. Chem. Fats Other Lipids 15, 219–254.

    Article  PubMed  CAS  Google Scholar 

  10. Huttner, J.J., Cornwell, D.G., and Milo, G.E. (1977) T.C.A. Manual 3, 633–639.

    Article  Google Scholar 

  11. Groschal-Stewart, U., Chamley, J.H., McConnell, J.D., and Burnstock, G. (1975) Histochemistry 43, 215–224.

    Article  Google Scholar 

  12. Gavino, V.C., Milo, G.E., and Cornwell, D.G. (1982) Cell Tissue Kinet. 15, 225–231.

    PubMed  CAS  Google Scholar 

  13. Ohkawa, H., Ohishi, N., and Yagi, K. (1978) J. Lipid Res. 19, 1053–1057.

    PubMed  CAS  Google Scholar 

  14. Gardner, H.W. (1980) in Autoxidation in Food and Biological Systems (Simic, M.G., and Karel, M., eds.) pp. 447–504, Plenum Press, New York, NY.

    Google Scholar 

  15. Gavino, V.C., Miller, J.S., Dillman, J.M., Milo, G.E., and Cornwell, D.G. (1981) J. Lipid Res. 22, 57–62.

    PubMed  CAS  Google Scholar 

  16. Pace-Asciak, C., and Wolfe, L.S. (1968) Biochim. Biophys. Acta 152, 784–787.

    PubMed  CAS  Google Scholar 

  17. Ziboh, V.A. (1973) J. Lipid Res. 14, 377–384.

    PubMed  CAS  Google Scholar 

  18. Lands, W.E.M., LeTellier, P.R., Rome, L.H., and Vanderhoek, J.Y. (1973) Adv. Biosci. 9, 15–28.

    Google Scholar 

  19. Ziboh, V.A., Vanderhoek, J.Y., and Lands, W.E.M. (1974) Prostaglandins 5, 233–240.

    Article  PubMed  CAS  Google Scholar 

  20. Dyerberg, J., and Jorgensen, K.A. (1980) Artery 8, 12–17.

    PubMed  CAS  Google Scholar 

  21. Kidwell, W.R., Monaco, M.E., Wicha, M.S., and Smith, G.S. (1978) Cancer Res. 38, 4091–4100.

    PubMed  CAS  Google Scholar 

  22. Wicha, M.S., Liotta, L.A., and Kidwell, W.R. (1979) Cancer Res. 39, 426–435.

    PubMed  CAS  Google Scholar 

  23. Ross, R. (1981) Arteriosclerosis 1, 293–311.

    PubMed  CAS  Google Scholar 

  24. Friedman, Z. (1981) Prog. Lipid Res. 20, 59–66.

    Article  PubMed  CAS  Google Scholar 

  25. Harris, W.S., Connor, W.E. and Goodnight, Jr., S.H. (1981) Prog. Lipis Res. 20, 75–79.

    Article  CAS  Google Scholar 

  26. Hornstra, G. (1981) Prog. Lipid Res. 20, 407–413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fatty acids are designated by the number of carbon atoms: number of double bonds and the position of the first double bond from the methyl terminus of the acyl chain is noted in parenthesis: 18∶1(n-9), 9-octadecenoic acid; 18∶2(n-9), 6,9-octadecadienoic acid; 18∶2(n-6), 9,12-octadecadienoic acid; 18∶3(n-6), 6,9,12-octadecatrienoic acid, 18∶3(n-3), 9,12,15-octadecatrienoic acid; 20∶2(n-9), 8,11-eicosadienoic acid; 20∶3(n-9), 5,8,11-eicosatrienoic acid; 20∶3(n-6), 8,11,-14-eicosatrienoic acid, 20∶4(n-6), 5,8,11,14-eicosatetraenoic acid; 20∶5(n-3), 5,8,11,14,17-eicosapentaenoic acid; 22∶4-(n-6), 7,10,13,16-docosatetraenoic acid, 22∶6(n-3), 4,7,10,13,16,19-docosahexaenoic acid.

About this article

Cite this article

Morisaki, N., Sprecher, H., Milo, G.E. et al. Fatty acid specificity in the inhibition of cell proliferation and its relationship to lipid peroxidation and prostaglandin biosynthesis. Lipids 17, 893–899 (1982). https://doi.org/10.1007/BF02534584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534584

Keywords

Navigation