Skip to main content
Log in

Two improved algorithms for envelope and wavefront reduction

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Two algorithms for reordering sparse, symmetric matrices or undirected graphs to reduce envelope and wavefront are considered. The first is a combinatorial algorithm introduced by Sloan and further developed by Duff, Reid, and Scott; we describe enhancements to the Sloan algorithm that improve its quality and reduce its run time. Our test problems fall into two classes with differing asymptotic behavior of their envelope parameters as a function of the weights in the Sloan algorithm. We describe an efficientO(nlogn+m) time implementation of the Sloan algorithm, wheren is the number of rows (vertices), andm is the number of nonzeros (edges). On a collection of test problems, the improved Sloan algorithm required, on the average, only twice the time required by the simpler RCM algorithm while improving the mean square wavefront by a factor of three. The second algorithm is a hybrid that combines a spectral algorithm for envelope and wavefront reduction with a refinement step that uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope size and mean square wavefront obtained from the Sloan algorithm at the cost of greater running times. We illustrate how these reductions translate into tangible benefits for frontal Cholesky factorization and incomplete factorization preconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anonymous,Harwell Subroutine Library, A Catalogue of Subroutines (Release 12). 1995.

  2. C. C. Ashcraft,Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput., 16 (1995), pp. 1404–1411.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. E. Atkins, E. G. Boman, and B. Hendrickson,A spectral algorithm for the seriation problem. Tech. Report, Sandia National Lab, Albuquerque, NM.

  4. S. T. Barnard, A. Pothen, and H. D. Simon,A spectral algorithm for envelope reduction of sparse matrices, J. Numerical Linear Algebra with Applications, 2 (1995), pp. 317–334. A shorter version has appeared in Supercomputing '93, IEEE Computer Society Press, pp. 493–502, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. G. Boman and B. Hendrickson,A multilevel algorithm for envelope reduction, Preprint, Sandia National Labs, Albuquerque, NM, 1996.

    Google Scholar 

  6. E. H. Cuthill and J. McKee,Reducing the bandwidth of sparse symmetric matrices, in Proceed. 24th Nat. Conf. Assoc. Comput. Mach., ACM Publications, 1969, pp. 157–172.

  7. E. F. D'Azevedo, P. A. Forsyth, and W. P. Tang,Ordering methods for preconditioned conjugate gradients methods applied to unstructured grid problems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 944–961.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Duff and G. Meurant,The effect of ordering on preconditioned conjugate gradients, BIT, 29 (1989), pp. 635–657.

    Article  MATH  MathSciNet  Google Scholar 

  9. I. S. Duff, A. M. Erisman, and J. K. Reid,Direct Methods for Sparse Matrices, Clarendon Press, Oxford, 1986.

    MATH  Google Scholar 

  10. I. S. Duff, R. G. Grimes, and J. G. Lewis,Users' Guide for the Harwell-Boeing Sparse Matrix Collection, 1992.

  11. I. S. Duff, J. K. Reid, and J. A. Scott,The use of profile reduction algorithms with a frontal code, Internat. J. Numer. Meth. Engrg., 28 (1989), pp. 2555–2568.

    Article  MATH  Google Scholar 

  12. M. Fiedler,Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (1973), pp. 298–305.

    MATH  MathSciNet  Google Scholar 

  13. M. Fiedler,A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Math. J., 25 (1975), pp. 619–633.

    MATH  MathSciNet  Google Scholar 

  14. A. George,Computer implementation of the finite element method, Tech. Report 208, Department of Computer Science, Stanford University, Stanford, CA, 1971.

    Google Scholar 

  15. A. George and J. W-H. Liu,The evolution of the minimum degree algorithm, SIAM Review, 31 (1989), pp. 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. George and A. Pothen,An analysis of spectral envelope-reduction via quadratic assignment problems, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 706–732.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. E. Gibbs,Algorithm 509: A hybrid profile reduction algorithm, ACM Trans. Math. Software, 2 (1976), pp. 378–387.

    Article  Google Scholar 

  18. N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer,An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Num. Anal., 13 (1976), pp. 236–249.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. R. Gilbert, G. L. Miller, and S.-H. Teng,Geometric mesh partitioning: Implementation and experiments, Tech. Report CSL-94-13, Xerox Palo Alto Research Center, CA, 1994.

    Google Scholar 

  20. D. S. Greenberg and S. C. Istrail,Physical mapping with STS hybridization: opportunities and limits, Tech. Report, Sandia National Labs, Albuquerque, NM, 1994.

    Google Scholar 

  21. R. G. Grimes, D. J. Pierce, and H. D. Simon,A new algorithm for finding a pseudoperipheral node in a graph, SIAM J. Math. Anal. Appl., 11 (1990), pp. 323–334.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Guattery and G. Miller,On the performance of spectral graph partitioning methods, in 6th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1995, ACM-SIAM, pp. 233–242.

  23. C. Helmberg, B. Mohar, S. Poljak, and F. Rendl,A spectral approach to band-width and separator problems in graphs. Preprint, Department of Mathematics, University of Ljubljana, Lubljana, Slovenia, 1993.

    Google Scholar 

  24. B. Hendrickson and R. Leland,The Chaco User's Guide, Sandia National Laboratories, Albuquerque, NM, 1993.

    Google Scholar 

  25. B. Hendrickson and R. Leland,A multilevel algorithm for partitioning graphs, Tech. Report SAND 93-0074, Sandia National Laboratories, Albuquerque, NM, 1993.

    Google Scholar 

  26. B. Hendrickson and R. Leland,An improved spectral graph partitioning algorithm for mapping parallel computations, SIAM J. Sci. Comput., 16 (1995), pp. 452–469.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Juvan and B. Mohar,Laplace eigenvalue and bandwidth-type invariants of graphs. Preprint, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia, 1990.

    Google Scholar 

  28. M. Juvan and B. Mohar,Optimal linear labelings and eigenvalues of graphs, Discr. Appl. Math., 36 (1992), pp. 153–168.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. G. Lewis,Implementations of the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms, ACM Trans. Math. Software, 8 (1982), pp. 180–189.

    Article  MATH  Google Scholar 

  30. Y. Lin and J. Yuan,Minimum profile of grid networks in structure analysis. Preprint, Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, 1993.

    Google Scholar 

  31. Y. Lin and J. Yuan,Profile minimization problem for matrices and graphs. Preprint, Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China, 1993.

    Google Scholar 

  32. J. W-H. Liu,A generalized envelope method for sparse factorization by rows, Tech. Report CS-88-09, Department of Computer Science, York University, 1988.

  33. J. W-H. Liu and A. H. Sherman,Comparative analysis of the Cuthill-Mckee and the reverse Cuthill-Mckee ordering algorithms for sparse matrices, SIAM J. Numer. Anal., 13 (1976), pp. 198–213.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis,Automatic mesh partitioning, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W-H. Liu, eds., The IMA Volumes in Mathematics and its Applications, 56, Springer-Verlag, pp. 57–84.

  35. G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee,Node and element resequencing using the Laplacian of a finite element graph, Part I, Internat. J. Numer. Meth. Engrg., 37 (1994), pp. 1511–1530.

    Article  MATH  Google Scholar 

  36. G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee,Node and element resequencing using the Laplacian of a finite element graph, Part II, Internat. J. Numer. Meth. Engrg., 37 (1994), pp. 1531–1555.

    Article  Google Scholar 

  37. A. Pothen, H. D. Simon, and K. P. Liou,Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430–452.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Pothen, H. D. Simon, and L. Wang,Spectral nested dissection, Tech. Report CS-92-01, Computer Science, Pennsylvania State University, University Park, PA, 1992.

    Google Scholar 

  39. S. W. Sloan,An algorithm for profile and wavefront reduction of sparse matrices, Internat. J. Numer. Meth. Engrg., 23 (1986), pp. 239–251.

    Article  MATH  MathSciNet  Google Scholar 

  40. L. Wang,Spectral Nested Dissection, PhD thesis, The Pennsylvania State University, 1994.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the U. S. National Science Foundation grants CCR-9412698, DMS-9505110, and ECS-9527169, by U. S. Department of Energy grant DE-FG05-94ER25216, and by the National Aeronautics and Space Administration under NASA Contract NAS1-19480 while the second author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumfert, G., Pothen, A. Two improved algorithms for envelope and wavefront reduction. Bit Numer Math 37, 559–590 (1997). https://doi.org/10.1007/BF02510240

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02510240

AMS subject classification

Key words

Navigation