Skip to main content
Log in

Non-linear registration for brain images by maximising feature and intensity similarities with a Bayesian framework

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The objective of this work was to provide a new, precise registration of the cortical mantle with a non-linear transformation. Image registration is broadly classified into two types, using intensity similarity and feature similarity. Whereas the former approach has merit in global brain matching, the latter provides a fast registration centred on a region of interest. The hybrid registration proposed in this paper was achieved using a Bayesian framework, which consisted of a likelihood model including intensity similarity and a prior model including feature information and a smoothing constraint. In this approach, each voxel was spatially transformed, so that the distance between corresponding features was shortened and also so that the intensity correlation was maximised. The result of the hybrid method clearly showed a good match of global brain (r=0.930) by including intensity similarity. Moreover, this method compensated for the approximated sulcus of the feature-based method with intensity information, so that the geometric shape and thickness of the sulcus at the feature-defined region was likely to be registered. The accuracy in the feature-defined area was improved by 33.4% and 7.5% compared with feature-based and intensity-based methods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit, Y., Grenander, U., andPiccioni M. (1991): ‘Structural image restoration through deformable templates’,J. Am. Stat. Assoc.,86, pp. 376–387

    Google Scholar 

  • Ashburner, J., andFriston, K. J. (1999): ‘Nonlinear spatial normalization using basis functions’Human Brain Mapping,7, pp. 254–266

    Article  Google Scholar 

  • Bezdek, J. C. (1981): ‘Pattern recognition with fuzzy objective function algorithms’ (Plenum Press, New York, 1981)

    Google Scholar 

  • Bookstein, F. L. (1989): ‘Principal warps: Thin-plate splines and the decomposition of deformations’,IEEE Trans. Pattern Anal. Mach. Intell.,11, pp. 567–585

    Article  MATH  Google Scholar 

  • Bookstein, F. L. (1997): ‘Landmark methods for forms without landmarks: morphometrics of group differences in outline shape’,Med. Image Anal.,1, pp. 225–243

    Article  Google Scholar 

  • Christensen, G. E., Rabbitt R. D., andMiller, M. I. (1994): ‘3D brain mapping using a deformable neuroanatomy’Phys. Med. Biol.,39, pp. 609–618

    Article  Google Scholar 

  • Christensen, G. E., Rabbitt, R. D., andMiller, M. I. (1996): ‘Deformable templates using large deformation kinematics’,IEEE Trans. Image Process.,5, pp. 1435–1447

    Article  Google Scholar 

  • Davatzikos, C. A., Vaillant, M., Resnick, S. M., Prince, J. L., Letovsky, S., andBryan, R. N. (1996): ‘A computerized approach for morphological analysis of the corpus callosum’,J. Comput. Assist. Tomogr.,20, pp. 88–97

    Google Scholar 

  • Davis, M. H., Khotanzad, A., Flamig, D. P., andHarms, S. E. (1997): ‘A physics based coordinate transformation for 3D image matching’,IEEE Trans. Med. Imag.,16, pp. 317–328

    Google Scholar 

  • Evans, A. C., Collins, D. L., andHolmes, C. J. (1996): ‘Computational approaches to quantifying human neuroanatomic variability’ inToga, A. W., andMazziotta, J. C. (Eds): ‘Brain mapping: the methods’ (1996)

  • Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., andFrackowiak, R. S. J. (1995): ‘Spatial registration and normalization of images’,Human Brain Mapping,2, pp. 165–189

    Google Scholar 

  • Hill, D. L. G., Hawkes, D. J., Harrison, N. A., andRuff, C. F. (1993): ‘A strategy for automated multimodality image registration incorporating anatomical knowledge and image characteristics’. Proc. Information Processing in Medical Imaging, Flagstaff, USA, pp. 182–196

  • Lee, S., Wolberg, G., andShin, S. Y. (1997): ‘Scattered data interpolation with multilevel B-splines’IEEE Trans. Vis. Comput. Graphics,3, pp. 228–244

    Google Scholar 

  • Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., andSuetens, P. (1997): ‘Multimodality image registration by maximization of mutual information’,IEEE Trans. Med. Imag.,16, pp. 187–198

    Google Scholar 

  • Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., andLancaster, J. (1995): ‘A probabilistic atlas of the human brain: theory and rationale for its development’,Neuroimage,2, pp. 89–101

    Article  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., andVetterling, W. T. (1992): ‘Numerical Recipes in C’ (Cambridge University Press, Cambridge, UK, 1992)

    Google Scholar 

  • Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., andHawkes, D. J. (1999): ‘Nonrigid registration using free-form deformations: application to breast MR images’,IEEE Trans. Med. Imag.,18, pp. 712–721

    Google Scholar 

  • Sanides, F. (1962): ‘Die architektonik des menschlichen stirnhirms’ inMueller, M., Spatz, H., andVogel, P. (Eds): ‘Monographien aus dem Gesamtegebiete der Neurologte und Psychiatrie’ (Springer-Verlag, Berlin, 1962)

    Google Scholar 

  • Studholme, C., Hill, D. L. G., andHawkes, D. J. (1996): ‘Automated 3-D registration of MR and CT images of the head’,Med. Image Anal.,1, pp. 163–175

    Article  Google Scholar 

  • Thompson, P. M., andToga, A. W. (1996): ‘Visualization and mapping of anatomic abnormalities using a probabilistic brain atlas based on random fluid transformations’. Proc. Int. Conf. on Visualization in biomedical computing, pp. 383–392

  • Trees, D. L. V. (1968): ‘Estimation and modulation theory, Part I’ (John Wiley and Sons, New York, 1968)

    Google Scholar 

  • Vaillant, M., andDavatzikos, C. A. (1997): ‘Finding parametric representations of the cortical sulci using an active contour model’,Med. Image Anal.,1, pp. 295–315

    Article  Google Scholar 

  • Vajda, I. (1989): ‘Theory of statistical inference and information’ (Kluwer, Dordrecht, The Netherlands, 1989)

    Google Scholar 

  • Wahba, G. (1990): ‘Spline models for observational data’ (Society for Industrial and Applied Mathematics, Philadelphia, 1990)

    Google Scholar 

  • Yoon, U. C., Kim, J. S., Kim, J. S., Kim, I. Y., andKim, S. I. (2001): ‘Adaptable fuzzy c-means for improved classification as a preprocessing procedure of brain parcellation’,J. Digit. Imag.,14, pp. 238–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Lee, J.M., Kim, J.J. et al. Non-linear registration for brain images by maximising feature and intensity similarities with a Bayesian framework. Med. Biol. Eng. Comput. 41, 473–480 (2003). https://doi.org/10.1007/BF02348092

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348092

Keywords

Navigation