Skip to main content
Log in

Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy

  • Cellular Engineering: Tissue Engineering and Biomaterials
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Many substances are used in the production of biomaterials: metals (titanium), ceramics (alumina), synthetic polymers (polyurethanes, silicones, polyglycolic acid (PGA), polylactic acid (PLA), copolymers of lactic and glycolic acids (PLGA), polyanhydrides, polyorthoesters) and natural polymers (chitosan, glycosaminoglycans, collagen). With the rapid development in tissue engineering, these different biomaterials have been used as three-dimensional scaffolds and cell transplant devices. The principal biochemical and biological characteristics of the collagen-based biomaterials are presented, including their interactions with cells (fibroblasts), distinct from those of synthetic polymers, and their potential use in gene therapy through the formation of neo-organs or organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T. D., andSchor, S. L. (1983): ‘The contraction of collagen matrices by dermal fibroblasts’,J. Ultrast. Res.,83, pp. 205–219

    Article  Google Scholar 

  • Anselme, K., Petite, H., andHerbage, D. (1992). ‘Inhibition of calcification in vivo by acyl cross-linking of a collagen-glycosaminoglycan sponge’,Matrix,12, pp. 364

    Google Scholar 

  • Bell, E. (1995): ‘Deterministic models for tissue engineering’,Cell. Eng.,1, pp 28–34

    Google Scholar 

  • Bell, E., Ivarsson, B., andMerrill, C. (1979): ‘Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro’,Proc. Natl. Acad. Sci.,76, pp. 1274–1278

    Google Scholar 

  • Benghuzzi, H. (1996). ‘Cytological evaluation of capsular tissue surrounding TCPL implant in adult rats’,Biomed. Sci. Instrum.,32, pp. 81–86

    Google Scholar 

  • Berthod, F., Hayek, D., Damour, O., andCollombel, C. (1993): ‘Collagen synthesis by fibroblasts cultured within a collagen sponge’,Biomaterials,14, pp. 749–754

    Article  Google Scholar 

  • Bonnassar, L., andVacanti, Ch. (1998): ‘Tissue engineering: The first decade and beyond’,J. Cell. Biochem.,30/31, pp. 297–303

    Google Scholar 

  • Boyce, S. T., Christianson, D. J., andHansbrough J.F. (1988): ‘Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal keratinocytes’,J. Biomed. Mater: Res.,22, pp. 939–957

    Article  Google Scholar 

  • Cao, X., Wang, J., Zhang, W., Chen, G., Kong, X., andTani, K. (1995): ‘Treatment of human hepatocellular carcinoma by fibroblast-mediated human interferon alpha gene therapy in combination with adoptive chemoimmunotherapy’,J. Cancer Res. Clin. Oncol.,121, pp. 457–462

    Google Scholar 

  • Chevallay, B., Abdul-Malak, N., andHerbage, D. (2000): ‘Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: Influence of cross-linking with diphenylphosphorylazide on matrix reorganization, growth, biosynthetic and proteolytic activities’,J. Biomed. Mater: Res.,49, pp. 448–459

    Article  Google Scholar 

  • Cohen-Haguenauer, O. (1996). ‘Quelle technologie pour quelle pathologie?’,Biofutur. 162, pp. 11–17.

    Google Scholar 

  • Chen, B. F., Chang, W. C., Chen, S. T., Chen, D. S. andHwang, L. H. (1995). ‘Long-term expression of the biologically active growth hormone in genetically modified fibroblasts after implantation into a hypopysectomized rat’,Hum. Gene Ther.,6, pp. 917–926

    Google Scholar 

  • Colombo, M. P., Ferrari, G., Stoppacciaro, A., Parenza, M., Rodolfo, M., Mavilio, F., andParmiani, G. (1991). ‘Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinomain vivo’,J. Exp. Med.,173 pp. 889–897

    Article  Google Scholar 

  • Cooperman, L., andMichaeli, D. (1984). ‘The immunogenicity of injectable collagen I. A 1-year prospective study’,J. Am. Acad. Dermatol.,10, pp. 638–646

    Google Scholar 

  • Cote, M. F., Sirois, E., andDoillon, C. J. (1992): ‘In vitro contraction rate of collagen in sponge-shape matrices’,J. Biomat. Sci. Polymer Edn.,3, pp. 301–313

    Google Scholar 

  • Danos, O., Moullier, P., andHeard, J. M. (1993): ‘Reimplantation de cellules genetiquement modifiees dans des neo-organes vascularises’,Medecine/Science,9, pp. 208–210

    Google Scholar 

  • Demetriou, A. A., Whiting, J. F., Feldman, D., Levenson, S. M., Chowdhury, N. R., Moscioni, A. D., Kram, M., andChowdhury, J. R. (1986): ‘Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes’,Science,233, pp. 1190–1192

    Google Scholar 

  • Doillon, C. J., Whyne, C. F., Brandwein, S., andSilver, F. H. (1986): ‘Collagen-based wound dressings: control of the pore structure and morphology’,J. Biomed. Mater. Res.,20, pp. 1219–1228

    Article  Google Scholar 

  • Doillon, C. J. (1988). ‘Porous collagen sponge wound dressings:in vivo andin vitro studies’,J. Biomat. Applic.,2, pp. 562–577

    Google Scholar 

  • Dwarki, V. J., Belloni, P., Nijar, T., Smith, J., Couto, L., andRabier, M. et al. (1995). ‘Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice’,Proc. Natl. Acad. Sci. USA,92, pp. 1023–1027

    Google Scholar 

  • Eckes, B., Mauch, C., Hÿppe, G., andKrieg, T. (1993): ‘Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms’,FEBS Lett.,318, pp. 129–133

    Article  Google Scholar 

  • Ehrlich, H. P. (1988): ‘The modulation of contraction of fibroblast populated collagen lattices by types I, II and III collagen’,Tiss. Cell,20, pp. 47–50

    Article  Google Scholar 

  • Ehrlich, H. P., Buttle, D. J., andBernanke, D. H. (1989): ‘Physiological variables affecting collagen lattice contraction by human dermal fibroblasts’,Exp. Mol. Pathol.,50, pp. 220–229

    Article  Google Scholar 

  • Ehrlich, H. P., Rockwell, W. B., Cornwell, T. L., andRajaratnam, B. M. (1991). ‘Demonstration of a direct role for myosin light chain kinase in fibroblast-populated collagen lattice contraction’J. Cell. Physiol.,146, pp. 1–7

    Article  Google Scholar 

  • Ehrmann, R. L. andGey, G. O. (1956): ‘The growth of cells on a transparent gel of reconstituted rat tail collagen’,J. Natl. Acad. Sci.,16, pp. 1375

    Google Scholar 

  • Ellingsworth, L. R., DeLustro, F., Brennan, J. E., Saamura, S., andMcPherson, J. (1986). ‘The human response to reconstituted bovine collagen’,J. Immunol.,136, pp. 877–882

    Google Scholar 

  • Gabrilovich, D. I., Cunningham, H. T., andCarbone, D. P. (1996): ‘IL-12 and mutant P53 peptide-pulsed dendritic cells for specific immunotherapy of cancer’,J. Immunother: Emphasis Tumor Immuno.,19, pp. 414–418

    Google Scholar 

  • Gillery, P., Serpier, H., Polette, M., Bellon, G., Glaver, C., Wegrowski, Y., Birembaut, P., Kalis, B., Cariou, R., andMaquart, F.X. (1992). ‘Gamma-interferon inhibits extracellular matrix synthesis and remodeling in collagen lattice cultures of normal and scleroderma skin fibroblasts’,Eur. J. Cell. Biol.,57, pp. 244–253

    Google Scholar 

  • Guidry, C., andGrinnell, F. (1987): ‘Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts’,J. Cell Biol.,104, pp. 1097–1103

    Article  Google Scholar 

  • Gullberg, D., Tingstrom, A., Thuresson, A. C., Olsson, L., Tetracio, L., Borg, T. K., andRubin, K. (1990): ‘Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF’,Exp. Cell Res.,186, pp. 264–272

    Article  Google Scholar 

  • Ho-Sung, L., Tsuchihashi, M., Tenshin, S. andKawata T. (1994): ‘Effect of retinoic acid on contraction of collagen gel induced by fibroblasts’,Biochem. Biophys. Res. Com.,205, pp. 455–459

    Google Scholar 

  • Huc, A. (1993): ‘Les biomateriaux a base de collagene’,Lyon Pharmaceutique,44, pp. 309–319

    Google Scholar 

  • Imamura, E., Sawatani, O., Koyanagi, H., Noishiki, Y., andMiyata, T. (1989): ‘Epoxy compounds as a new cross-linking agent for porcine aortic leaflets: subcutaneous implant studies in rats’,J. Card. Surg.,4, pp. 50–57

    Google Scholar 

  • Kahn, A. (1992): ‘Therapie genique’,Med. Sci. 8, pp. 3–33

    Google Scholar 

  • Khor, E. (1997): ‘Methods for treatment of collagenous tissues for bioprosthesis’,Biomaterials,18, pp. 95–105

    Article  Google Scholar 

  • Klein, C. E., Dressel, D., Steinmayerauch, C., Eckes, B., Krieg, T., Bankert, R. B., andWeber, L. (1991): ‘Integrinα 2β1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils’,J. Cell Biol.,115, pp. 1427–1436

    Article  Google Scholar 

  • Kleinmann, H. K., Rohrbach, D. H., Terranova, V. P., et al. (1982). ‘Collagenous matrices as determinants of cell function’ inFurthmayr, H. (Ed.). ‘Immunochemistry of the extracellular matrix, vol. 2’ (CRC Press, Boca Raton) pp. 151–174

    Google Scholar 

  • Klopper, P. J. (1986): ‘Collagen in surgical research’,Eur. Surg. Res.,18, pp. 218–223

    Google Scholar 

  • Lambert, C. A., Soudant, E. P., Nusgens, B. V., andLapiere, C. M. (1992): ‘Pretranscriptional regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces’,Lab. Invest.,66, pp. 444–451

    Google Scholar 

  • Langer, R., andVacanti, J. P. (1993): ‘Tissue engineering’,Science,260, pp. 920–926

    Google Scholar 

  • Langholz, O., Reckel, D., Mauch, C., Kozlowska, E., Bank, I., Krieg, T., andEckes, B. (1995): ‘Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated byα 2β1 andα 2β1 integrins’,J. Cell Biol.,131, pp. 1903–1915

    Article  Google Scholar 

  • Levy, R. J., Schoen, F. J., Sherman, F. S., Nichols, J., Hawley, M. A., andLund, S. A. (1986). ‘Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments’,Am. J. Pathol.,122, pp. 71–82

    Google Scholar 

  • McCoy, J. P., Schade, W. J., Siegle, R. J., Waldinger, T. P., Vanderveen, E. E., andSwanson, N. A. (1985). ‘Characterization of the humoral immune response to bovine collagen implants’,Arch. Dermatol.,121, pp. 990–994

    Article  Google Scholar 

  • McPherson, J. M. (1992): ‘The utility of collagen-based vehicles in delivery of growth factors for hard and soft tissue wound repair’,Clin. Mater.,9, pp. 225–234

    Article  Google Scholar 

  • Mauch, C., Hatamochi, A., Scharffetter, K., andKrieg, T. (1988). ‘Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel’,Exp. Cell Res.,178 pp. 493–503

    Article  Google Scholar 

  • Mauch, C., Adelmann-Grill, B., Hatamochi, A., andKrieg, T. (1989): ‘Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen’,FEBS Lett.,250, pp. 301–305

    Article  Google Scholar 

  • Middelkoop, E., De Vries, H. J. C., Ruuls, L., Everts, V., Wildevuur, C.H.R., andWesterhof, W. (1995). ‘Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges’,Cell Tissue Res.,280, pp. 447–453

    Google Scholar 

  • Miyata, T., Taria, T., andNoishiki, Y. (1992): ‘Collagen engineering for biomaterial use’,Clin. Mater.,9, pp. 139–148

    Article  Google Scholar 

  • Montesano, R., andOrci, L. (1988): ‘Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing’,Proc. Natl. Acad. Sci. USA,85, pp. 4894–4897

    Google Scholar 

  • Moullier, P., Marechal, V., Danos, O., andHeard, J. M. (1993): ‘Continuous systemic secretion of a lysosomal enzyme by genetically modified mouse skin fibroblasts’Transplantation,56, pp. 427–432

    Google Scholar 

  • Naffakh, N., Henri, A., Villeval, J. L., Rouyer-Fessard, P., Moullier, P., Blumenfeld, N., Danos, O., Vainchenker, W., Heard, J. M., andBeuzard, Y. (1995). ‘Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts’,Proc. Natl. Acad. Sci. USA,92, pp. 3194–3198

    Google Scholar 

  • Nakagawa, S., Pawelek, P., andGrinnell, F. (1989a): ‘Longterm culture of fibroblasts in contracted collagen gels: effect on cell growth and biosynthetic activity’,J. Invest. Dermatol. 93, pp. 792–798

    Article  Google Scholar 

  • Nakagawa, S., Pawelek, P., andGrinnell, F. (1989b): ‘Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness’,Exp. Cell Res.,182, pp. 572–582

    Article  Google Scholar 

  • Nimni, M.E. (1997): ‘Polypeptide growth factors: targeted delivery system’,Biomaterials,18, pp. 1201–1225

    Article  Google Scholar 

  • Nishiyama, T., Tsunenaga, M., Nakayama, Y., Adachi, E., andHayashi, T. (1989): ‘Growth rate of human fibroblasts is repressed by the culture within reconstituted collagen matrix but not by the culture on the matrix’,Matrix,9, pp. 193–199

    Google Scholar 

  • Nusgens, B., Merrill, C., Lapiere, C., andBell, E. (1984): ‘Collagen biosynthesis by cells in a tissue equivalent matrix in vitro’,Collagen Rel. Res.,4, pp. 351–364

    Google Scholar 

  • O'Brien, T. K., Gabbay, S., Parkes, A. C., Knight, R. A., andZalesky, P. J. (1984): ‘Immunological reactivity to a new glutaradehyde tanned bovine pericardial heart valve’,Trans. Am. Soc. Artif. Intern. Organs,3, pp. 440–444

    Google Scholar 

  • Olde Damink, L. H. H. (1996): ‘Cross-linking of dermal sheep collagen using a water-soluble carbodiimide’,Biomaterials,17, pp. 765–773

    Article  Google Scholar 

  • Pachence, J. M., Berg, R. A., andSilver, F. H. (1987): ‘Collagen: its place in the medical device industry’,MD&DI,1, pp. 49–55

    Google Scholar 

  • Peterson, M. J., Kaplan, J., Jorgensen, C. M., Schmidt, L. A., Li L., andMorgan, J. R. et al. (1995): ‘Sustained production of human transferrin by transduced fibroblasts implanted into athymic mice: a model for somatic gene therapy’,J. Invest. Dermatol.,104, pp. 171–176

    Google Scholar 

  • Pette, H., Rault, I., Huc, A., Menasche, P., andHerbage, D. (1990). ‘Use of the acyl azide method for cross-linking collagen-rich tissues such as pericardium’,J. Biomed. Mater. Res.,24, pp. 179–187

    Google Scholar 

  • Petite, H., Frei, V., Huc, A., andHerbage, D. (1994): ‘Use of diphenylphosphorylazide for cross-linking collagen-based biomaterials’,J. Biomed. Mater: Res.,28, pp. 159–165

    Google Scholar 

  • Postlethwaite, A. E., Seyer, J. M., andKang, A. H. (1978): ‘Chemotactic attraction of human fibroblasts by type I, II and III collagens and collagen-derived peptides”,Proc. Natl. Acad. Sci. USA,75, pp. 871–875

    Google Scholar 

  • Ramshaw, J. A. M., Werkmeister, J. A., andGlattauer, V. (1995): ‘Collagen-based biomaterials’,Biotechnol. Genet. Eng. Rev.,13, pp. 335–382

    Google Scholar 

  • Rault, I., Frei, V., Herbage, D., Abdul-Malak, N., andHuc, A. (1996): ‘Evaluation of different chemical methods for cross-linking collagen gel, films and sponges’,J. Mater. Sci. Mater. Med.,7, pp. 215–221

    Article  Google Scholar 

  • Riikonen, T., Westermarck, J., Koivisto, L., Broberg, A., Kŝhŝri, V. M., andHeino, J. (1995). ‘Integrinα 2β1 is a positive regulator of collagenase (MMP-1) and collagen α1(I) gene expression’,J. Biol. Chem.,270, pp. 13548–13552

    Google Scholar 

  • Rosenthal, F. M., andKohler, G. (1997): ‘Collagen as matrix for neo-organ formation by gene-transfected fibroblasts’,Anticancer Res.,17, pp. 1179–1186

    Google Scholar 

  • Schiro, J. A., Chan, B. M. C., Roswit, W. T., Kassner, P. D., Pentland, A. P., Hemter, M. E., Eisen, A. Z., andKupper, T. S. (1991). ‘Integrinα 2β1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells,Cell,67, pp. 403–410

    Article  Google Scholar 

  • Seltzer, J. L., Lee, A. Y., Akers, K. T., Sudbeck, B., Southon, E. A., Wayner, E. A., andEisen, A. Z. (1994): ‘Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction’,Exp. Cell Res. 213, pp. 365–374

    Google Scholar 

  • Suminami, Y., Elder, E. M., Lotze, M. T., andWhiteside, T. L. (1995): ‘In situ interleukin-4 gene expression in cancer patients treated with genetically modified tumor vaccine. Cancer’,J. Immunother: Emphasis Tumor Immuno.,17, pp. 238–248

    Google Scholar 

  • Tahara, H., Zitvoge, L., Storkus, W. J., Robbin, P. D., andLotze, M. T. (1996): ‘Murine models of cancer cytokine gene therapy using interleukine-12’,Ann. N Y Acad. Sci.,795, pp. 275–283

    Google Scholar 

  • Thompson, J. A., Haudenschild, C. C., Anderson, K. D., DiPietro, J. M., Anderson, W. F., andMaciag, T. (1989). ‘Heparin-binding growth factor 1 induces the formation of organoid neovascular structuresin vivo’,Proc. Natl. Acad. Sci. USA,86, pp. 7928–7932

    Google Scholar 

  • Timpl, R., andMartin, G. R. (1981): ‘Components of basement membranes’ inFurthmayr, H. (Ed.): ‘Immunochemistry of the extracellular matrix, vol. 2’ (CRC Press, Boca Raton), pp. 119–150

    Google Scholar 

  • Tiollier, J., Dumas, H., Tardy, M., andTayot, J. L. (1990): ‘Fibroblast behaviour on gels of type I, III and IV human placental collagens’,Exp. Cell Res.,191, pp. 95–104

    Article  Google Scholar 

  • Tomasek, J. J., andAkiyama, S. K. (1992): ‘Fibroblast-mediated collagen gel contraction does not require fibronectin-alpha 5 beta 1 integrin interaction’,Anat. Rec.,234, pp. 153–160

    Article  Google Scholar 

  • Tomasek, J. J., Halliday, N. L., Updike, D. L., Ahern-Moore, J. S., Vu, T. K. H., Liu, R. W., andHoward, E. W. (1997): ‘Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton’,J. Biol. Chem.,272, pp. 7482–7487

    Google Scholar 

  • Tuckwell, D.S., andHumphries, M. J. (1993) ‘Molecular and cellular biology of integrins’,Crit. Rev. Oncol. Hematol.,15, pp. 149–171

    Google Scholar 

  • Unemori, E. N., andWerb, Z. (1986): ‘Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels’,J. Cell Biol.,103, pp. 1021–1031

    Article  Google Scholar 

  • Weadock, K., Olsen, R. M., andSilver, R. H. (1984): ‘Evaluation of collagen crosslinking techniques’,Biomater. Med. Dev. Artif. Org.,11, pp. 294–318

    Google Scholar 

  • Werkmeister, J. A., andRamshaw, J. A. M. (1992): ‘Editorial: collagen-based biomaterials’,Clin. Mater.,9, pp. 137–138

    Article  Google Scholar 

  • Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. W., Ahmed-Ansari, A., Sell, K. M., Pollard, J. W., andStanley E. R. (1990): ‘Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse’,Proc. Natl. Acad. Sci. USA 87, pp. 4828–4832

    Google Scholar 

  • Xu, J. andClark, R. A. F. (1997): ‘A three-dimensional collagen lattice induces protein kinase C-ξ activity: role in α2 integrin and collagenase mRNA expression’,J. Cell Biol.,136, pp. 473–483

    Google Scholar 

  • Yamato, M., Yamamoto, K., andHayashi, T. (1993): ‘Age-related changes in collagen gel contraction by cultured human lung fibroblasts resulting in cross-over of contraction curves between young and aged cells’,Mech. Ageing Dev.,67, pp. 149–158

    Article  Google Scholar 

  • Yamato, M., Adachi, E., Yamamoto, K., andHayashi, T. (1995): ‘Condensation of collagen fibrils to the direct vicinity of fibroblasts as a cause of gel contraction’,J. Biochem.,117, pp. 940–946

    Google Scholar 

  • Yannas, I. V., Burke, J. F., Orgill, D. P., andSkrabut, E. M. (1982): ‘Wound tissue can utilize a polymeric template to synthesise a functional extension of skin’,Science,215, pp. 174–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Herbage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevallay, B., Herbage, D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med. Biol. Eng. Comput. 38, 211–218 (2000). https://doi.org/10.1007/BF02344779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344779

Keywords

Navigation