1.

P. H. Baxendale and B. L. Rozowskii, Kinematic dynamo and intermittence in a turbulent flow, CAMS preprint #92-2 (1992).

2.

L. Bertini, N. Cancrini, and G. Jona-Lasinio, The stochastic Burgers equation,*Commun. Math. Phys.*
**165**:211–232 (1994).

3.

L. Bertini, N. Cancrini, and G. Jona-Lasinio, Burgers equation forced by conservative or nonconservative noise,*Proceedings of the NATO-ASI School* “Stochastic Analysis and Applications in Physics” (Madeira, August 1993), to appear.

4.

L. V. Bogachev, The moment approach to intermittence of random media. The model of a mean-field diffusion, Preprint Nr. 116, Institut für Mathematik Ruhr-Universität-Bochum (1991).

5.

N. Cancrini, Soluzione del problema di Cauchy per l'equazione di Burgers stocastica in una dimensione spaziale, Ph.D. dissertation, Dipartimento di Fisica, Università di Roma “La Sapienza” (1993) [in Italian].

6.

G. Da Prato, A. Debussche, and R. Temam, Stochastic Burger equation, Preprint di Matematica n. 27, Scuola Normale Superiore, Pisa (1993).

7.

I. I. Gikhman and A. V. Skorohod,*Stochastic Differential Equations* (Springer-Verlag, Berlin, 1972).

8.

H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang, The Burgers equation with a noisy force and the stochastic heat equation,*Commun. Partial Differential Equations*
**19**:119–141 (1994).

9.

M. Kardar, Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities,*Nucl. Phys. B*
**290**:582–602 (1987).

10.

M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamical scaling of growing interfaces,*Phys. Rev. Lett.*
**56**:889–892 (1986).

11.

M. Kardar and Y.-C. Zhang, Scaling of directed polymers in random media,*Phys. Rev. Lett.*
**58**:2087–2090 (1987).

12.

J. Krug and H. Spohn, Kinetic roughening of growing surfaces, in*Solids far from equilibrium: Growth, Morphology and Defects*, C. Godrèche, ed. (Cambridge University Press, Cambridge, 1991).

13.

S. A. Molchanov, Ideas in theory of random media,*Acta Appl. Math.*
**22**:139–282 (1991), and references therein.

14.

C. Mueller, On the support of solutions to the heat equation with noise,*Stochastics Stochastics Rep.*
**37**:225–245 (1991).

15.

J. M. Noble, Evolution equation with Gaussian potential, Preprint (1993).

16.

L. Pastur, Large time behaviour of moments of solution of parabolic differential equations with random coefficients, Séminaire 1991/92 Centre de Mathematiques, Ecole Polytechnique, Palaiseau, France.

17.

D. Revuz and M. Yor,*Continuous Martingales and Brownian Motion* (Springer-Verlag, Berlin, 1991).