Skip to main content
Log in

The biological equilibrium of base pairs

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

An inherent feature of double-stranded DNA is the possible replacement of any base pair by another one upon replication. A replication-dependent substitution mutation of a matched base pair requires the temporary formation of a mismatched base pair (mispair). A functionally complementary pair of mispairs is ascribed to each of the four types of substitution mutations. Provided that all types of mispairs can be formed, a dynamic biological equilibrium between the four matched base pairs must exist in all DNA, which is directly related to the formation and stability of the corresponding eight mispairs in vivo. Each nucleotide position in a genome can therefore be described as a system of six dynamic equilibria between the four matched base pairs. After a sufficient number of replications, these equilibrium states will express an overall mutation-selection balance for each individual base pair. In a thermodynamic context, the mispairs represent intermediate states on the transformation pathway between the matched base pairs. Catalysts change the stability and probability of formation of intermediate states. Mutagenic proteins are proposed as hypothetical substitution mutation catalysts in vivo. Functionally, they would be capable of recognizing a particular DNA sequence, tautomerizing a nucleotide base thereof, and hence efficiently inducing a specific misincorporation. Phenomenologically such catalysts would accelerate the rates of substitution mutations and provide pathways for directional mutation pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beutler E, Gelbart T, Han J, Koziol JA, Beutler B (1989) Evolution of the genome and the genetic code: selection at the dinucleotide level by methylation and polyribonucleotide cleavage. Proc Natl Acad Sci USA 86:192–196

    PubMed  Google Scholar 

  • Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335:142–145

    PubMed  Google Scholar 

  • Charczuk R, Tamm C, Suri B, Bickle T (1986) An unusual base pairing between pyrimidine and pyridine nucleotides. Nucleic Acids Res 14:9530

    PubMed  Google Scholar 

  • Dawkins R (1982) The extended phenotype. The gene as the unit of selection, ed 2 (1987). Oxford University Press, New York, pp 81–96

    Google Scholar 

  • Discussions about Cairns et al. (1988/1989) in Nature (1988) 335:112–113, 336:21–22, 336:525–528, in Nature (1989) 337: 119–120, 337:123–124

  • Dohet C, Wagner R, Radman M (1985) Repair of defined single base-pair mismatches inEscherichia coli. Proc Natl Acad Sci USA 82:503–505

    Google Scholar 

  • Dover GA (1987) DNA turnover and the molecular clock. J Mol Evol 26:47–58

    PubMed  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 10:465–523

    Google Scholar 

  • Eigen M (1978) The hypercycle. Part B: the abstract hypercycle. Naturwissenschaften 65:7–41

    Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle. Part A: emergence of the hypercycle. Naturwissenschaften 11:541–565

    Google Scholar 

  • Eigen M, Schuster P (1978) The hypercycle. Part C: the realistic hypercycle. Naturwissenschaften 7:341–369

    Google Scholar 

  • Fowler RG, Schaaper RM, Glickman BW (1986) Characterization of mutational specificity within the lac-1 gene for a mutD5 mutator strain ofEscherichia coli defective in 3′-5′ exonuclease proofreading activity. J Bacteriol 167:130–137

    PubMed  Google Scholar 

  • French DL, Laskov R, Scharff MD (1989) The role of somatic hypermutation in the generation of antibody diversity. Science 244:1152–1157

    PubMed  Google Scholar 

  • Goodman MF, Branscomb EW (1986) DNA replication fidelity and base mispairing mutagenesis. In: Kirkwood TBL, Rosenberger RF, Galas DJ (eds) Accuracy in molecular processes. Chapman & Hall, London, New York, pp 191–232

    Google Scholar 

  • Gutman GA, Hatfield GW (1989) Nonrandom utilization of codon pairs inEscherichia coli. Proc Natl Acad Sci USA 86: 3699–3703

    PubMed  Google Scholar 

  • Ikemura T (1985) Codon usage, tRNA content, and rate of synonymous substitution. In: Ohta T, Aoki K (eds) Population genetics and molecular evolution. Springer-Verlag, Berlin, pp 385–406

    Google Scholar 

  • Jukes T, Bhushan V (1986) Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes. J Mol Evol 24:39–44

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, London

    Google Scholar 

  • Kuchta RD, Benkovic P, Benkovic SJ (1988) Kinetic mechanism whereby DNA polymerase I (Klenow) replicates with high fidelity. Biochemistry 27:6716–6725

    PubMed  Google Scholar 

  • Kunkel TA, Bebenek K (1988) Recent studies of the fidelity of DNA synthesis. Biochim Biophys Acta 951:1–15

    PubMed  Google Scholar 

  • Ohno S (1988a) Codon preference is but an illusion created by the construction principle of coding sequences. Proc Natl Acad Sci USA 85:4378–4382

    PubMed  Google Scholar 

  • Ohno S (1988b) Universal rule for coding sequence construction: TA/CG deficiency-TG/CT excess. Proc Natl Acad Sci USA 85:9630–9634

    PubMed  Google Scholar 

  • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA (1985) Structure of large fragment ofEscherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766

    PubMed  Google Scholar 

  • Schaaper RM, Danforth BN, Glickman BW (1986) Mechanisms of spontaneous mutagenesis. An analysis of the spectrum of spontaneous mutation in theEscherichia coli lac-1 gene. J Mol Biol 189:273–284

    PubMed  Google Scholar 

  • Schaaper RM, Dunn RL (1987) Spectra of spontaneous mutations inEscherichia coli strains defective in mismatch correction. The nature of in-vivo DNA replication errors. Proc Natl Acad Sci USA 84:6220–6224

    PubMed  Google Scholar 

  • Strazewski P (1988) Mispair formation in DNA can involve rare tautomeric forms in the template. Nucleic Acids Res 16: 9377–9398

    PubMed  Google Scholar 

  • Strazewski P, Tamm C (1990) Replication experiments with nucleotide base analogues. Angew Chem 102 (in press)

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    PubMed  Google Scholar 

  • Tonegawa S (1988) How does an organism manage during its lifetime to respond to a huge number of different antigens. Angew Chem Int Ed Engl 27:1028–1039

    Google Scholar 

  • Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263:285–289

    PubMed  Google Scholar 

  • Vogel H, Zuckerkandl E (1971) Randomness and “thermodynamics” of molecular evolution. In: Schoffeniels E (ed) Biochemical evolution and the origin of life. North-Holland. Amsterdam, pp 352–365

    Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    PubMed  Google Scholar 

  • Zckerkandl E (1965) Remarques sur l'évolution des polynucléotides comparée à celle des polypeptides. Bull Soc Chim Biol 47:1729–1730

    PubMed  Google Scholar 

  • Zckerkandl E (1987) On the molecular evolutionary clock. J Mol Evol 26:34–46

    PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J theoret Biol 8:357–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Present address until March 31 1990: University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, Great Britain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strazewski, P. The biological equilibrium of base pairs. J Mol Evol 30, 116–124 (1990). https://doi.org/10.1007/BF02099938

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099938

Key words

Navigation