Skip to main content
Log in

Ferrimagnetic spinels in hydrothermal and thermal treatment of MnxFe2−2x(OH)6−4x

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Products of hydrothermal treatment of the initial amorphous system MnxFe2−2x(OH)6−4x for 0≤x1 in 0.1x intervals, and products of their further thermal treatment, were examined by chemical analysis, X-ray, IR, and DTA techniques supported by magnetic measurements. After hydrothermal growth for lowx, hematite and goethite phases occurred. Although the goethite phase was still identifiable atx=0.6, formation of a solid solution with the isostructural groutite was not found. The ferrimagnetic spinel phase, which resists heating up to 400‡C, was present at 0.5≤x≤0.9. At higher temperatures, it transformed into the rhombohedral hematite type phase or into the cubic bixbyite phase. AtT≥900‡C, a ferrimagnetic spinel structure reappeared up tox=0.8. For x=0.9, the low- and high-temperature forms of the hausmannite phase occurred, forx= 1 passing from one form into another through Mn5O8 and partritgeite.

For a primary mixture Mn0.5Fe(OH)4, corresponding to the manganese ferrite structure, the lattice parameter of which passes from 8.43 å through 8.33 å to 8.50 å, the probable crystallochemical formula was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Johnson, A. Noordermeer, M. M. E. Severin and W. A. M. Meeuwissen, J. Magn. Magn. Mater., 116 (1992). 169.

    Article  Google Scholar 

  2. E. Blums, M. M. Maiorov and G. Kronkalns, IEEE Trans. Magn., 29 (1993) 3267.

    Article  Google Scholar 

  3. G. M. Sutariya, R. V. Upadhyay and R. V. Mehta, J. Colloid Interface Sci., 155 (1993) 152.

    Article  Google Scholar 

  4. E. Segal, M. Brezeanu, V. Bujoreanu and C. Gheorghies, Thermochim. Acta, 196 (1992) 7.

    Article  Google Scholar 

  5. R. V. Upadhyay, K. J. Davies, S. Wells and S. W. Charles, J. Magn. Magn. Mater., 132 (1994) 249; 139 (1994) 249.

    Article  Google Scholar 

  6. R. V. Mehta, R. V. Upadhyay, B. A. Dasannacharya, P. S. Goyal and K. S. Rao, J. Magn. Magn. Mater., 132 (1994) 153.

    Article  Google Scholar 

  7. Y. Yamamoto and A. Makino, J. Magn. Magn. Mater., 133 (1994) 500.

    Article  Google Scholar 

  8. F. K. Lotgering, J. Phys. Chem. Solids, 25 (1964) 95.

    Article  Google Scholar 

  9. O. Glemser, G. Gattow and H. Meisiek, Z. Anorg. Allg. Chem., 309 (1961) 1.

    Article  Google Scholar 

  10. H. R. Oswald and M. J. Wampetich, Helv. Chim. Acta, 50 (1967) 2023.

    Article  Google Scholar 

  11. J. Kaczmarek and E. Wolska, J. Solid State Chem., 103 (1993) 387.

    Article  Google Scholar 

  12. J. Kaczmarek and E. Wolska, Solid State Ionics, 63–65 (1993) 633.

    Article  Google Scholar 

  13. E. Wolska and J. Kaczmarek, Solid State Phenomena, 39–40 (1994) 153.

    Google Scholar 

  14. W. Wolski and J. Kaczmarek, J. Magn. Magn. Mater., 40 (1983) 190.

    Article  Google Scholar 

  15. W. Stiers and U. Schwertmann, Geochim. Cosmochim. Acta, 49 (1985) 1909.

    Article  Google Scholar 

  16. R. E. Vandenberghe, A. E. Verbeeck, E. De Grave and W. Stiers, Hyperfine Interact., 29 (1986) 1157.

    Google Scholar 

  17. R. M. Cornell and R. Giovanoli, Clays Clay Miner., 35 (1987) 11.

    Google Scholar 

  18. M. H. Ebinger and D. G. Schulze, Clays Clay Miner., 37 (1989) 151.

    Google Scholar 

  19. J. W. Gruner, Am. Miner., 32 (1947) 654.

    Google Scholar 

  20. R. L. Collin and W. N. Lipscomb, Acta Crystallogr., 2 (1949) 104.

    Article  Google Scholar 

  21. L. S. D. Glasser and L. Ingram, Acta Crystallogr., B 24 (1968) 1233.

    Google Scholar 

  22. J. Kaczmarek, PhD Thesis, Poznań 1990.

  23. J. Pattanayak and V. S. Rao, J. Mater. Sci. Lett., 8 (1989) 1405.

    Article  Google Scholar 

  24. J. Pattanayak and H. S. Maiti, J. Mater. Sci. Lett., 9 (1990) 414.

    Article  Google Scholar 

  25. H. J. Van Hook and M. L. Keith, Am. Miner., 43 (1958) 69.

    Google Scholar 

  26. E. Wolska, Z. Kristallogr., 154 (1981) 69.

    Google Scholar 

  27. E. Wolska, Solid State Ionics, 28–30 (1988) 1349.

    Article  Google Scholar 

  28. E. Wolska and U. Schwertmann, Z. Kristallogr., 189 (1989) 223.

    Google Scholar 

  29. J. Smit and H. P. J. Wijn, Ferrites, Philips, Eidhoven 1959, p. 157.

    Google Scholar 

  30. H. H. Kedesdy and A. Tauber, J. Am. Ceram. Soc., 39 (1956) 425.

    Google Scholar 

  31. F. K. Lotgering, Philips Res. Repts, 20 (1965) 320.

    Google Scholar 

  32. M. A. Denecke, W. Gun\er, G. Buxbaum and P. Kuske, Mater. Res. Bull., 27 (1992) 507.

    Article  Google Scholar 

  33. H. Yasuoka, A. Hirai, T. Shinio, M. Kiyama, Y. Bando and T. Tokada, J. Phys. Soc. Jap., 22 (1967) 174.

    Article  Google Scholar 

  34. J. B. Goodenough and A. L. Loeb, Phys. Rev., 98 (1955) 391.

    Article  Google Scholar 

  35. R. D. Shannon, Acta Crystallogr., A 32 (1976) 751.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful to KBN (The State Committee for Scientific Research, Poland) for grant No. 3 T09A 064 08, which contributed substantially to the materialization of this project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolski, W., Wolska, E., Kaczmarek, J. et al. Ferrimagnetic spinels in hydrothermal and thermal treatment of MnxFe2−2x(OH)6−4x . Journal of Thermal Analysis 48, 247–258 (1997). https://doi.org/10.1007/BF01979268

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979268

Keywords

Navigation