Skip to main content
Log in

Effect of calcium on the membrane potential ofAmphiuma red cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

An increase in extracellular Ca concentration causes the membrane of giant red cells of the salamander,Amphiuma means, to undergo a marked, transient hyperpolarization. This hyperpolarization is caused by an increase in K permeability of the membrane as judged from the K sensitivity of the membrane potential and from the rate of K loss under influence of raised extracellular Ca concentration. At constant external pH, the induction of hyperpolarization by increased extracellular Ca has a relatively well-defined threshold concentration. Furthermore the phenomenon is of an “all or none” type with most of the cells having membrane potential values either in the normal range (about −15 mV) or in the range −40 to −70 mV. Shortly after suspension in Ringer's with 15mM Ca, most if not all of the individual cells are hyperpolarized. Upon continued exposure (5–20 min) to the higher Ca concentration the membrane potential returns to the normal value in a fashion compatible with an “all or none” response. The observed Ca effect is sensitive to the pH of the suspending medium. At pH 6.2 the response is absent whereas the hyperpolarization is markedly stronger at pH 8.2 than at pH 7.2. It is argued that a reliable transport number for K under influence of Ca cannot be estimated from the slope of membrane potentialvs. log (extracellular K concentration). This is probably related to the fact that the membrane potentials of the cells in the population do not stay constant in time. The above phenomenon is compared with the Ca-induced K permeability in poisoned human red cells or red cell ghosts. It is important to note that the cells employed in the present study are neither poisoned nor mechanically disrupted. This study emphasizes that the role of Ca in regulating cell membrane permeability to K seems to be a general feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, R.M., Hoffman, J.F. 1971. The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells.J. Membrane Biol. 6:315

    Google Scholar 

  • Blum, R.M., Hoffman, J.F. 1972. Ca-stimulated K transport in human red cells: Localization of the Ca-sensitive site to the inside of the membrane.Biochem. Biophys. Res. Commun. 46:1146

    PubMed  Google Scholar 

  • Brown, A.M., Walker, I.L., Sutton, R.B. 1970. Increased chloride conductance as the proximate cause of hydrogen ion concentration effects inAplysia neurons.J. Gen. Physiol. 56:559

    PubMed  Google Scholar 

  • Christoffersen, G.R.J. 1973. Chloride conductance and the effect of extracellular calcium concentration on resting neurons in the snail,Helix pomatia.Comp. Biochem. Physiol. 46A:371

    Google Scholar 

  • Christoffersen, G.R.J., Skibsted, L.H. 1975. Calcium ion activity in physiological salt solutions: Influence of anions substituted for chloride.Comp. Biochem. Physiol. 50A:317

    Google Scholar 

  • Colombe, B.W., Macey, R.I. 1974. Effects of calcium on potassium and water transport in human erythrocyte ghosts.Biochim. Biophys. Acta 363:226

    PubMed  Google Scholar 

  • Forstner, J., Manery, J.F. 1971. Calcium binding by human erythrocyte membranes.Biochem. J. 124:563

    PubMed  Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (Lond.) 137:218

    Google Scholar 

  • Gárdos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653

    PubMed  Google Scholar 

  • Gárdos, G. 1959. The role of calcium in the potassium permeability of human erythrocytes.Acta Physiol. (budapest)15:121

    Google Scholar 

  • Gilbert, D.L., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9:447

    PubMed  Google Scholar 

  • Hille, B. 1968. Charges and potentials at the nerve surface: Divalent ions and pH.J. Gen. Physiol. 51:221

    PubMed  Google Scholar 

  • Knauf, P.A., Riordan, J.R., Schuhmann, B., Wood-Guth, I., Passow, H. 1975. Calciumpotassium-stimulated net potassium efflux from human erythrocyte ghosts.J. Membrane Biol. 25:1

    Google Scholar 

  • Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rørth and P. Astrup, editors. p. 291. Munksgaard, Copenhagen

    Google Scholar 

  • Lassen, U.V., Nielsen, A.-M.T., Pape, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation.J. Membrane Biol. 6:269

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1973. Membrane potential ofAmphiuma red cells: Effect of calcium.In: Erythrocytes, Thrombocytes, Leukocytes. K. Moser, E. Gerlach, E. Deutsch, and W. Wilmanns, editors. p. 33. Thieme, Stuttgart

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B., Bengston, O. 1974. Calcium-related hyperpolarization of theAmphiuma red cell membrane following micropuncture.J. Membrane Biol. 18:125

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1975. Electrical and permeability characteristics of theAmphiuma red cell membrane.In: Biomembranes: Structure and Function. G. Gárdos and I. Szász, editors. p. 181. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Lepke, S., Passow, H. 1960. Hemmung des Kaliumverlustes fluoridvergifteter Erythrocyten durch Komplexbildner.Pflügers Arch. ges. Physiol. 271:389

    Google Scholar 

  • Lew, V.L. 1970. Effect of intracellular calcium on the potassium permeability of human red cells.J. Physiol. (Lond.) 206:35P

    Google Scholar 

  • Lew, V.L. 1974. On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes.In: Comparative Biochemistry and Physiology of Transport. L. Bolis, K. Bloch, S.E. Luria, and F. Lynen, editors. p. 310. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Lichtman, M.A., Weed, R.I. 1972. Divalent cation content of normal and ATP-depleted erythrocytes and erythrocyte membranes.Nouv. Rev. Fr. Hematol. 12:799

    PubMed  Google Scholar 

  • Passow, H. 1970. The red blood cell: Penetration, distribution and toxic action of heavy metals.In: Effects of Metals on Cells, Subcellular Elements and Macromolecules. J. Maniloff, J.R. Coleman, and M. Miller, editors. p. 291. Charles C. Thomas, Publishers, Springfield, Ill.

    Google Scholar 

  • Passow, H., Tillmann, K. 1955. Untersuchungen über den Kaliumverlust bleivergifteter Menschenerythrocyten.Pflügers Arch. ges. Physiol. 262:23

    Google Scholar 

  • Porzig, H. 1972. ATP-independent calcium net movements in human red cell ghosts.J. Membrane Biol. 8:237

    Google Scholar 

  • Riordan, J.R., Passow, H. 1971. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts.Biochim. Biophys. Acta 249:601

    PubMed  Google Scholar 

  • Riordan, J.R., Passow, H. 1973. The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts.In: Comparative Physiology. L. Bolis, K. Schmidt-Nielsen, and S.H.P. Maddrell, editors. p. 543. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Romero, P.J., Whittam, R. 1971. The control by internal calcium of membrane permeability to sodium and potassium.J. Physiol. (Lond.) 214:481

    Google Scholar 

  • Schrager, P. 1974. Ionic conductance changes in voltage clamped crayfish axons at low pH.J. Gen. Physiol. 64:666

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassen, U.V., Pape, L. & Vestergaard-Bogind, B. Effect of calcium on the membrane potential ofAmphiuma red cells. J. Membrain Biol. 26, 51–70 (1976). https://doi.org/10.1007/BF01868866

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868866

Keywords

Navigation