Skip to main content
Log in

A theoretical correlation for the Nusselt number in direct contact evaporation of a moving drop in an immiscible liquid

Eine theoretische Beziehung für die Nusselt- Zahl bei Verdunstung eines bewegten Tropfens, der in direktem Kontakt zu einer unmischbaren Flüssigkeit steht

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Numerical solutions for the Nusselt number during the direct contact evaporation of a moving drop in a stagnant column of immiscible liquid are presented. The effect of bubble growth rate on the radial component of drop velocity is taken into account in the analysis and the Nusselt number is found to be a function of Peclet number, Jakob number and vapour open angle. A comparison of theoretical and experimental correlations for the Nusselt number shows good agreement. The analysis also yields information on the temperature profile and the thickness of the thermal boundary layer surrounding the evaporating drop.

Zusammenfassung

Es werden numerische Lösungen für die Nusselt-Zahl während der Verdunstung eines bewegten Tropfens, der in direktem Kontakt mit der umgebenden ruhenden Säule aus unmischbarer Flüssigkeit steht, mitgeteilt. In der Berechnung wird der Einfluß der Blasenwachstumsrate auf die radiale Komponente der Tropfengeschwindigkeit berücksichtigt. Es wird festgestellt, daß die Nusselt-Zahl eine Funktion der Peclet-Zahl, der Jakobs-Zahl und des „Öffnungswinkels des Dampfes“ ist. Ein Vergleich der theoretischen und experimentellen Beziehungen für die Nusselt-Zahl zeigt gute Übereinstimmung. Die Berechnung enthält auch Informationen über das Temperaturprofil und die Dicke der thermischen Grenzschicht um den verdampfenden Tropfen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant in Eq. (4)

B :

diameter ratio

C p :

specific heat of continuous liquid phase

h :

instantaneous heat transfer coefficient

h fg :

latent heat of evaporation of dispersed phase

Ja :

system Jakob number, ϱCpΔ t/(ϱv hfg)

k :

thermal conductivity of continuous liquid phase

m :

mass of liquid fraction in the evaporating drop

m 0 :

total mass of evaporating drop

Nu :

Nusselt number, 2hR/k

Pe :

Peclet number, 2UR/α

Pr :

Prandtl number,ν/α

q :

heat transfer rate per unit surface area of evaporating drop

r :

radial coordinate

R :

instantaneous radius of evaporating drop

Re :

Reynolds number, 2UR/ν

t :

time

T :

temperature

T c :

temperature of continuous liquid phase

T d :

saturation temperature of dispersed phase

U r :

radial component ofU

U Θ :

tangential component ofU

U :

bubble translational velocity

x :

exponent in Eq. (4)

y :

transformed coordinate, (r−R)/R

α :

thermal diffusivity of continuous liquid phase

β :

half vapour open angle

\(\dot \gamma \) :

non-dimensional bubble growth rate,\(\left( {\frac{{dR}}{{dt}} \cdot \frac{R}{\alpha }} \right)\)

ΔT :

temperature difference, (T c T d )

ϱ :

density of continuous liquid phase

ϱ v :

density of dispersed vapour phase

φ :

non-dimensional temperature,(T− T c )/(T p -T c )

Θ :

spherical polar coordinate

τ :

dimensionless time,α t/R2

μ :

transformed coordinate, (−cosΘ)

ν :

kinematic viscosity of continuous liquid phase

References

  1. Sideman, S.: Direct contact heat transfer between immiscible liquids. Adv. Chem. Eng. 6 (1966) 207

    Google Scholar 

  2. Sideman, S.; Taitel, Y.: Direct contact heat transfer with change of phase: Evaporation of drops in an immiscible liquid medium. Int. J. Heat Mass Transfer 7 (1964) 1273

    Google Scholar 

  3. Simpson, H. C.; Beggs, G. C.; Nazir, M.: Evaporation of butane drops in brine. Desalination 15 (1974) 11

    Google Scholar 

  4. Pinder, K. L.: Surface area prediction for two-phase drops in an immiscible liquid. Can. J. Chem. Eng. 58 (1980) 318

    Google Scholar 

  5. Selecki, A.; Gradon, L.: Equation of motion of an expanding vapour drop in an immiscible liquid medium. Int. J. Heat Mass Transfer 19 (1976) 925

    Google Scholar 

  6. Mokhtarzadeh, M. R.; El-Shirbini, A. A.: A theoretical analysis of evaporating droplets in an immiscible liquid. Int. J. Heat Mass Transfer 22 (1979) 27

    Google Scholar 

  7. Prakash, C. B.; Pinder, K. L.: Direct contact heat transfer between two immiscible liquids during vaporization Part I: Measurement of heat transfer coefficient. Can. J. Chem. Eng. 45 (1967) 207

    Google Scholar 

  8. Prakash, C. B.; Pinder, K. L.: Direct contact heat transfer between two immiscible liquids during vaporization Part II: Total evaporation time. Can. J. Chem. Eng. 45 (1967) 215

    Google Scholar 

  9. Adams, A. E. S.; Pinder, K. L.: Average heat transfer coefficient during the direct contact evaporation of a liquid drop. Can. J. Chem. Eng. 50 (1972) 707

    Google Scholar 

  10. Tochitani, Y.; Mori, Y. H.; Komotori, K.: Vaporization of single liquid drops in an immiscible liquid Part I: Forms and motions of vaporizing drops. Wärme-Stoffübertrag. 10 (1977) 51

    Google Scholar 

  11. Tochitani, Y; Nakagawa, T.; Mori, Y. H.; Komotori, K.: Vaporization of single liquid drops in an immiscible liquid Part II: Heat transfer characteristics. Wärme-Stoffübertrag. 10 (1977) 71

    Google Scholar 

  12. Smith, R. C.; Rohsenow, W. M.; Kazimi, M. S.: Volumetric heat transfer coefficients for direct contact evaporation. J. Heat Transfer 104 (1982) 264

    Google Scholar 

  13. Wittke, D. D.; Chao, B. T.: Collapse of vapour bubbles with translatory motion. J. Heat Transfer 89 (1967) 17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battya, P., Raghavan, V.R. & Seetharamu, K.N. A theoretical correlation for the Nusselt number in direct contact evaporation of a moving drop in an immiscible liquid. Warme- und Stoffubertragung 19, 61–66 (1985). https://doi.org/10.1007/BF01682548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682548

Keywords

Navigation