Skip to main content
Log in

Photosynthetic responses and daily carbon balance ofColpomenia peregrina: Seasonal variations and differences between intertidal and subtidal populations

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The seasonal photosynthetic responses and daily carbon gain of upper intertidal, low intertidal and subtidal (3 to 4 m depth) populations ofColpomenia peregrina were examined over a 2 yr period (1986–1988) in Santa Catalina Island, California, USA. The populations showed significant differences in their photosynthetic responses, daily carbon balance and carbon-specific growth rates when normalized to tissue area or to chlorophyll content. The substantial plasticity with respect to photosynthetic responses shown byC. peregrina is considered to be an important factor in facilitating the colonization of both intertidal and subtidal habitats. This species appears to have a cellular carbon metabolism influenced by responses to season and tidal elevation. Highest net daily carbon balance, predicted carbonspecific growth rates and net growth efficiency were achieved in upper intertidal habitats during summer. These parameters decreased in winter and progressively declined with increasing depth as plants become increasingly exposed to low-light regimes. The diminishing net daily carbon balance and predicted carbon-specific field growth rates found during winter suggest that standing stock and lower subtidal limits of distribution ofC. peregrina are at least partly controlled by these two factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alberte, R. S., Cheng, L., Lewin, R. A. (1986). Photosynthetic characteristics ofProchloron sp./ascidian symbioses. I. Light and temperature responses of the algal symbiont ofLissoclinum patella. Mar. Biol. 90: 575–587

    Google Scholar 

  • Arnold, K. E., Littler, M. M. (1985). The carbon-14 method for measuring primary productivity. In: Littler, M. M., Littler, D. S. (eds.) Handbook of phycological methods, ecological field methods: macroalgae. Cambridge University Press, Cambridge

    Google Scholar 

  • Axelsson, L. (1988). Changes in pH as a measure of photosynthesis by marine macroalgae. Mar. Biol. 97: 287–294

    Google Scholar 

  • Buesa, R. J. (1980). Photosynthetic quotient of marine plants. Photosynthetica 14: 337–342

    Google Scholar 

  • Dennison, W. C., Alberte, R. S. (1982). Photosynthetic responses ofZostera marina L. (eelgrass) toin situ manipulations of light intensity. Oecologia 55: 137–144

    Google Scholar 

  • Dennison, W. C., Alberte, R. S. (1985). Role of daily light period in the depth distribution ofZostera marina (eelgrass). Mar. Ecol. Prog. Ser. 25: 51–61

    Google Scholar 

  • Dring, M. T. (1982). The biology of marine plants. Edward Arnold Press, London

    Google Scholar 

  • Emerson, S. E., Zedler, J. B. (1978). Recolonization of intertidal algae: an experimental study. Mar. Biol. 44: 315–324

    Google Scholar 

  • Falkowski, P. G. (1981). Light-shade adaptation and assimilation numbers. J. Plankton Res. 3: 203–216

    Google Scholar 

  • Falkowski, P. G., Dubinsky, Z., Wyman, K. (1985). Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30: 311–321

    Google Scholar 

  • Foster, M. S. (1975). Algal succession in aMacrocystis pyrifera forest. Mar. Biol. 32: 313–329

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., Kremling, K. (eds.) (1983). Methods of seawater analysis. Springer-Verlag, New York

    Google Scholar 

  • Griffiths, D. J., Thinh, L., Florian, Z. (1978). A modified chamber for use with an oxygen electrode to allow measurement of incident illumination within the reaction suspension. Limnol. Oceanogr. 23: 368–372

    Google Scholar 

  • Hatcher, B. G., Chapman, A. R. O., Mann, K. H. (1977) An annual carbon budget for the kelpLaminaria longicruris. Mar. Biol. 44: 85–96

    Google Scholar 

  • Hoffman, W. E., Dawes, C. J. (1980). Photosynthetic rates and primary productivity by two Florida benthic red algal species from a salt marsh and a mangrove community. Bull. mar. Sci. 30: 358–364

    Google Scholar 

  • Jassby, A. D., Platt, T. (1976), Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–546

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyllsa, b, c 1,c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194

    Google Scholar 

  • Littler, M. M., Arnold, K. E. (1980). Sources of variability in macroalgal primary productivity: sampling and interpretative problems. Aquat. Bot. 8: 141–156

    Google Scholar 

  • Littler, M. M., Arnold, K. E. (1985). Electrodes and chemicals. In: Littler, M. M., Littler, D. S. (eds.) Handbook of phycological methods, ecological field methods: macroalgae. Cambridge University Press, Cambridge

    Google Scholar 

  • Littler, M. M., Littler, D. S. (1980). The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 116: 25–44

    Google Scholar 

  • Littler, M. M., Murray, S. N., Arnold, K. E. (1979). Seasonal variations in net photosynthetic performance and cover of intertidal macrophytes. Aquat. Bot. 7: 35–46

    Google Scholar 

  • Lobban, C. S., Harrison, P. J., Duncan, M. J. (1985). The physiological ecology of seaweeds. Cambridge University Press, Cambridge

    Google Scholar 

  • Lüning, K. (1981). Light. In: Lobban, C. S., Wynne, M. J. (eds.). The biology of seaweeds. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc. ind. appl. Math. 11: 431–441

    Google Scholar 

  • Matta, J. L. (1988). The seasonal photophysiology ofColpomenia peregrina (Phaeophyta) across a vertical distributional gradient in Santa Catalina Island, California. Ph.D. dissertation, Department of Biology, University of California, Los Angeles

    Google Scholar 

  • Matta, J. L., Chapman, D. J. (1991). Morphological variability of the intertidal macroalgaColpomenia peregrina in relation to its net emersed carbon gain: interactions between light, temperature and desiccation (in preparation)

  • Murray, S. N., Littler, M. M. (1978). Patterns of algal succession in a perturbated marine intertidal community. J. Phycol. 14: 506–512

    Google Scholar 

  • Oates, B. R. (1985a). Ecological, physiological and fine structural investigations of the functional morphology of intertidal saccate algae. Ph.D. dissertation. Department of Biology, University of California, Irvine

    Google Scholar 

  • Oates, B. R. (1985b). Photosynthesis and amelioration of desiccation in the intertidal saccate algaColpomenia peregrina. Mar. Biol. 89: 1109–119

    Google Scholar 

  • Peterson, B. J. (1980). Aquatic primary productivity and the14C-CO2 method: a history of the productivity problem. A. Rev. Ecol. Syst. 11: 359–385

    Google Scholar 

  • Prézelin, B. B. (1981). Light reactions in photosynthesis. In: Platt, T. (ed.). Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sciences 210: 1–43

    Google Scholar 

  • Ramus, J. (1981). The capture and transduction of light energy. In: Lobban, C. S., Wynne, M. J. (eds.) The biology of seaweeds. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Ramus, J., Lemons, F., Zimmerman, C. (1977). Adaptation of lightharvesting pigments to downwelling light and the consequent photosynthetic performance of the eulittoral rockweedsAscophyllum nodosum andFucus vesiculosus. Mar. Biol. 42: 293–303

    Google Scholar 

  • Ramus, J., Rosenberg, G. (1980). Diurnal photosynthetic performance of seaweeds measured under natural conditions. Mar. Biol. 56: 21–28

    Google Scholar 

  • Richardson, K., Beardall, J., Raven, J. A. (1983). Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157–191

    Google Scholar 

  • Seely, G. R., Duncan, M. J., Vidaver, W. E. (1972). Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar. Biol. 12: 184–188

    Google Scholar 

  • Smith, C. M. (1983). Photosynthetic tolerances to intertidal temperature and osmotic stress by select intertidal marine algae. Ph.D. dissertation. Department of Biology, Stanford University

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Theis, C. L. (1985). Photosynthetic compensation relative to depth in three species of the green algaCodium from Santa Catalina Islands. M.S. thesis. Department of Biology, California State University, Fullerton

    Google Scholar 

  • Vandermeulen, H. (1986). Growth ofColpomenia peregrina (Phaeophyceae) in culture: effects of salinity, temperature and daylength. J. Phycol. 22: 138–144

    Google Scholar 

  • Vandermeulen, H., DeWreede, R. E. (1986). The phenology, mortality, dispersal and canopy species interaction ofColpomenia peregrina (Sauv.) Hamel in British Columbia. J. exp. mar. Biol. Ecol. 99: 31–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matta, J.L., Chapman, D.J. Photosynthetic responses and daily carbon balance ofColpomenia peregrina: Seasonal variations and differences between intertidal and subtidal populations. Mar. Biol. 108, 303–313 (1991). https://doi.org/10.1007/BF01344345

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344345

Keywords

Navigation