Skip to main content
Log in

Dehydration-melting of solid amphibolite at 10 kbar: Textural development, liquid interconnectivity and applications to the segregation of magmas

Dehydrations-Schmelzen von Amphiboliten bei 10 kbar: Texturelle Entwicklung, Interkonnektivität der Schmelze und Anwendungen auf die Segregation von Magmen

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Anisotropic crystal structures and rock texture control liquid morphology and distribution during dehydration-melting at 10 kbar in solid cylinders of lineated amphibolite (mode: hornblende 70%, plagioclase 30%), sealed in gold capsules, in piston-cylinder runs ranging from 21 days at 850 °C to 4 days at 1000 °C. The shapes of most liquid pockets are crystallographically-controlled, with many corners having angles greater than 60°. Few crystal/liquid triple junctions develop the interfacial energy-controlled dihedral angles (≡), which form in experiments using finely-ground powders of minerals with poor cleavage. Liquid interconnectivity probably is attained at 875 °C with only 2% liquid, indicating that dihedral angles less than 60° may not be necessary to achieve interconnectivity in partially melted metamorphic rocks. The surfaces between elongated grains in lineated rocks can become pathways for the migration of liquid or the diffusion of components. By 850 °C, hornblende begins to dehydrate at internal nucleation sites, producing a texture of hornblende rims and clinopyroxene cores (generally attributed to hydration of clinopyroxene). Within the temperature interval of 850–900 °C, transient vapor generates layers of low viscosity, H2O-saturated, granitoid liquid between hornblende and plagiocase crystal faces, potentially capable of segregation if time-temperature relationships are suitable. At higher temperatures the increased liquid fraction is H2O-undersaturated, with viscosity too high to permit segregation. There is a prospect that segregation of initially hydrous liquids could contribute to the dehydration of low-potassium amphibolites and effectively remove incompatible trace elements during the transition from amphibolite-facies to granulite-facies. Further experiments are needed to study the effects of time and temperature on textures in anisotropic rocks, particularly lineated amphibolites.

Zusammenfassung

Die texturelle Entwicklung von festen Zylindern von Amphibolit (Hornblende 70%, Plagioklas 30%) in Goldkapseln versiegelt, wurde w:⇆rend Dehydrations-Schmelzen bei 10 kbar in einem Piston-Zylinder-Apparat bei Temperaturen von 850°C bis 1000°C für 21 bis 4 Tage untersucht. Die anisotropen Mineralstrukturen und die Gesteinstextur kontrollieren die Morphologie und Verteilung der Schmelze. Diese Parameter sowie der Anteil an Schmelze, bestimmen die Interkonnektivität der Schmelze. Im Gegensatz zu Experimenten, die fein gemahlene Pulver von fast isotropen Mineralen (z.B. Olivin oder Quarz) benützen, scheinen hier die Energieverhältnisse der Kristallstruktur die Energiebeziehungen zwischen den Kristall-Schmelzoberflächen während der texturellen Entwicklung der amphibolitischen Gesteine zu dominieren. Wenige Kristall-Schmelze Triple-Junetions entwickeln zwischen Flächen energie-kontrollierte dihedrale Winkel (θ). Die Formen der meisten Schmelzeinschlüsse sind kristallographisch kontrolliert und viele Ecken zeigen Winkel, die größer als 60° sind. Die Interkonnektivität der Schmelze wird jedoch eindeutig bei 875° C mit nur 2% Schmelze erreicht und könnte möglicherweise auch bei niedrigeren Temperaturen zustande kommen. Das Vorkommen von dihedralen Winkeln, die kleiner als 60° sind, muß nicht notwendig sein, um Interkonnektivität in teilweis aufgeschmolzenen metamorphen Gesteinen zu erzeugen. Die Oberflächen zwischen gelängten Körnern in Amphiboliten mit Lineation können Wege für die Migration von Schmelzen oder für die Diffussion von Komponenten während teilweisen Aufschmelzens werden. Bei 850° C begann die Dehydration der Hornblende an internen Nukleations-Stellen, unabhängig vom Rest des Gesteins. Zwischen 850° C und 900 °C entsteht so eine Textur von Klinopyroxenen mit Hornblenderändern. Die nicht im Gleichgewicht befindliche Dampfphase, die dabei entsteht, führt zur Bildung von Lagen von wassergesättigter granitoider Schmelze zwischen Hornblende und Plagioklasflächen, mit einer berechneten Viskosität, die gerade niedrig genug ist, um Segregation durch Kompaktion zu ermöglichen. Bei höheren Temperaturen und während längerer Zeiten, wobei mehr Schmelze entsteht, löst sich die Dampfphase in wasseruntersättigter Schmelze, mit einer Viskosität, die zu hoch ist um Segregation in geologisch realistischen Zeiten zu ermöglichen. Die Entwässerung von kalium-armen Gesteinen durch Segregation von ursprünglich wässrigen Schmelzen, die sich in dieser Weise gebildet haben, dürfte beim Amphiboht-Granulit-Übergang eine Rolle spielen.[/ p]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arzi AA (1978) Fusion kinetics, water pressure, water diffusion and electrical conductivity in melting rock, interrelated. J Petrol 19: 153–169

    Google Scholar 

  • Barker F, Arth JG, Millard HT Jr (1979a) Archean trondhjemites of the southwestern Big Horn Mountains, Wyoming: a preliminary report. In:Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 401–414

    Google Scholar 

  • ——, ——,Millard HT Jr, Lipman PW (1979b) Four low-K siliceous rocks of the western U.S.A. In:Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 415–433

    Google Scholar 

  • Beard JS, Lofgren GE (1989) Effect of water on the composition of partial melts of greenstone and amphibolite. Science 244: 195–197

    Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures to 50 kilobars and temperatures up to 1750°C. J Geophys Res 65: 741–748

    Google Scholar 

  • ——, ——,Bell PM, England JL, Gilbert MC (1967) Pressure measurement in single-stage apparatus. Carnegie Inst Washington, Yearb 65: 410–414

    Google Scholar 

  • Brearley AJ (1987) An experimental and kinetic study of the breakdown of aluminous biotite at 800°C: reaction microstructures and mineral chemistry. Bull Mineral 110: 513–532

    Google Scholar 

  • Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28: 310–318

    Google Scholar 

  • Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamic constraints on fluid distribution in partial melts. J Geophys Res 84: 6102–6108

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In:Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 2nd ed. Holt, Rinehart and Winston, New York, pp 71–101

    Google Scholar 

  • Burton KW, O'Nions RK (1990) The timescale and mechanism of granulite formation at Kurunegala, Sri Lanka. Contrib Mineral Petrol 106: 66–89

    Google Scholar 

  • Busch W, Schneider G, Mehnert KR (1974) Initial melting at grain boundaries. Part II: Melting in rocks of granodioritic, quartzdioritic and tonalitic composition. N Jb Miner Mh 8: 345–370

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86: 287–306

    Google Scholar 

  • Cooper RF, Kohlstedt DL (1984) Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophysics 107:207–233

    Google Scholar 

  • Ellis DJ, Thompson AB (1986) Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3 + SiOO2 + H2O system under water-excess and water-deficient conditions to 10 kb: some implications for the origin of peraluminous melts from mafic rocks. J Petrol 27: 91–121

    Google Scholar 

  • Fujii N, Osamura K, Takahashi E (1986) Effect of water saturation on the distribution of partial melt in the olivine-pyroxene-plagioclase system. J Geophys Res 91: 9253–9259

    Google Scholar 

  • Green TH, Pearson NJ (1985) Experimental determination of REE partition coefficients between amphibole and basaltic to andesitic liquids at high pressure. Geochim Cosmochim Acta 49: 1465–1468

    Google Scholar 

  • Hacker BR (1990) Amphibolite-facies-to-granulite-facies reactions in experimentally deformed, unpowdered amphibolite. Am Mineral 75:1349–1361

    Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenetic studies of igneous systems. Ann Rev Earth Planet Sci 8: 371–406

    Google Scholar 

  • Herring C (1951) Theorems on the free energies of crystal surfaces. Phys Rev 82: 87–93

    Google Scholar 

  • Huang WL, Wyllie PJ (1973) Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib Mineral Petrol 42: 1–14

    Google Scholar 

  • ——, —— (1981) Phase relationships of S-type granite with H2O to 35 kbar: muscovite granite from Harney Peak, South Dakota. J Geophys Res 86: 1015–1029

    Google Scholar 

  • Isacks BL, Oliver J, Sykes LR (1968) Seismology and the new global tectonics. J Geophys Res 73: 5855–5899

    Google Scholar 

  • Johannes W (1983) Metastable melting in granite and related systems. In:Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva, Cheshire, pp 27–36

    Google Scholar 

  • Jurewicz SR, Jurewicz AJG (1986) Distribution of apparent angles on random sections with emphasis on dihedral angle measurements. J Geophys Res 91: 9277–9282

    Google Scholar 

  • ——, ——Watson EB (1984) Distribution of partial melt in a felsic system: the importance of surface energy. Contrib Mineral Petrol 85: 25–29

    Google Scholar 

  • ——, —— (1985) The distribution of partial melt in a granitic system: The application of liquid phase sintering theory. Geochim Cosmochim Acta 49: 1109–1121

    Google Scholar 

  • Kretz R (1966) Interpretation of the shape of mineral grains in metamorphic rocks. J Petrol 7: 68–94

    Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crystal anatexis. Contrib Mineral Petrol 99: 226–237

    Google Scholar 

  • Mason R (1978) Petrology of the metamorphic rocks. George Allen & Unwin, London, 254 pp

    Google Scholar 

  • McKenzie DP (1984) The generation and compaction of partially molten rock. J Petrol 25: 713–765

    Google Scholar 

  • —— (1985) The extraction of magma from the crust and mantle. Earth Planet Sci Lett 74: 81–91

    Google Scholar 

  • —— (1987) The compaction of igneous and sedimentary rocks. J Geol Soc London 144: 299–307

    Google Scholar 

  • Mehnert KR, Busch W, Schneider G (1973) Initial melting at grain boundaries of quartz and feldspar in gneisses and granulites. N Jb Miner Mh 4: 165–183

    Google Scholar 

  • Miller CF, Watson EB, Harrison TM (1988) Perspectives on the source, segregation and transport of granitoid magmas. Trans Royal Soc Edinburgh 79: 135–156

    Google Scholar 

  • Moment RL, Gordon RB (1964) Energy of grain boundaries in halite. J Am Ceram Soc 47: 570–573

    Google Scholar 

  • Patino Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol (in press)

  • Powell R (1983) Processes in granulite-facies metamorphism. In:Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva, Cheshire, pp 127–139

    Google Scholar 

  • Rapp RP (1990) Partial melting of metabasalt at low water contents, and the origin of the Archean continental crust: a summary of experimental evidence. Trans Am Geophys Union (EOS) 71: 1714

    Google Scholar 

  • Richter FM, McKenzie DP (1984) Dynamical models for melt segregation from a deformable matrix. J Geol 92: 729–740

    Google Scholar 

  • Robertson JK, Wyllie PJ (1971) Experimental studies on rocks from the Deboullie stock, northern Maine, including melting relations in the water-deficient environment. J Geol 79: 549–571

    Google Scholar 

  • Rubie DC, Brearley AJ (1987) Metastable melting during the breakdown of muscovite + quartz at 1 kbar. Bull Mineral 110: 533–549

    Google Scholar 

  • Rudnick RL, McClennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochim Cosmochim Acta 49: 1645–1655

    Google Scholar 

  • Rushmer T (1987) Fluid-absent melting of amphibolite: experimental results at 8 kbar. Terra Cognita 7: 286

    Google Scholar 

  • —— (1990) Hornblende stability during fluid-absent melting: experimental results at various pressures and temperatures. Trans Am Geophys Union (EOS) 71: 648

    Google Scholar 

  • Rutter MJ, Wyllie PJ (1988) Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. Nature 331: 159–160

    Google Scholar 

  • Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272: 870–893

    Google Scholar 

  • Silver L, Stolper E (1985) A thermodynamic model for hydrous silicate melts. J Geol 93: 161–178

    Google Scholar 

  • Sleep NH (1974) Segregation of magma from a mostly crystalline mush. Geol Soc Am Bull 85: 1225–1232

    Google Scholar 

  • Smith CS (1964) Some elementary principles of polycrystalline microstructure. Metall Rev 9: 1–47

    Google Scholar 

  • Smith HD (1974) An experimental study of the diffusion of Na, K, and Rb in magmatic silicate liquids. Ph.D. dissertation, Univ. Oregon

  • Spry A (1969) Metamorphic textures. Pergamon Press, Oxford, 350 pp

    Google Scholar 

  • Swalin RA (1972) Thermodynamics of solids. Wiley, New York, 387 pp

    Google Scholar 

  • Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O undersaturated granitic liquids. Am J Sci 282: 1567–1595

    Google Scholar 

  • Toramaru A, Fujii N (1986) Connectivity of melt phase in a partially molten peridotite. J Geophys Res 91: 9239–9252

    Google Scholar 

  • Van der Molen I, Paterson MS (1979) Experimental deformation of partially-melted granite. Contrib Mineral Petrol 70: 299–318

    Google Scholar 

  • Vernon RH (1970) Comparative grain-boundary studies of some basic and ultrabasic granulites, nodules and cumulates. Scott J Geol 6: 337–351

    Google Scholar 

  • —— (1976) Metamorphic processes. George Allen & Unwin, London, 247 pp

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98: 257–276

    Google Scholar 

  • von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J Geophys Res 91: 9261–9276

    Google Scholar 

  • Waff HS, Bulau JR (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J Geophys Res 84: 6109–6114

    Google Scholar 

  • ——, —— (1982) Experimental studies of near-equilibrium textures in partially molten silicates at high pressures. Adv Earth Planet Sci 12: 229–236

    Google Scholar 

  • Watson EB (1982) Melt infiltration and magma evolution. Geology 10: 236–240

    Google Scholar 

  • ——,Brenan JM (1987) Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet Sci Lett 85: 497–515

    Google Scholar 

  • Wickham SM (1987) The segregation and emplacement of granitic magmas. J Geol Soc London 144: 281–297

    Google Scholar 

  • Winther KT, Steele IM, Newton RC (1989) Experimental melting of high Al, low K-tholeiite at 8-22 kbar H2O pressures. Trans Am Geophys Union (EOS) 70: 506

    Google Scholar 

  • Wolf MB, Wyllie PJ (1989) The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kb. Trans Am Geophys Union (EOS) 70: 506

    Google Scholar 

  • — — Liquid morphology and interconnectivity in solid amphibolite during dehydrationmelting at 10 kb. Trans Am Geophys Union (EOS) 71: 1714

  • Wyllie PJ (1977) Crustal Anatexis: An Experimental Review. Tectonophysics 43: 41–71

    Google Scholar 

  • Yoder HS Jr, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3: 342–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M.B., Wyllie, P.J. Dehydration-melting of solid amphibolite at 10 kbar: Textural development, liquid interconnectivity and applications to the segregation of magmas. Mineralogy and Petrology 44, 151–179 (1991). https://doi.org/10.1007/BF01166961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166961

Keywords

Navigation