Skip to main content
Log in

Electromagnetic radiation and the afterlife

  • Published:
Journal of Near-Death Studies

Abstract

The question of survival of bodily death is often considered to be beyond contemporary scientific methods and conceptual categories. However, recent research into spontaneous radiations from living systems suggests a scientific foundation for the ancient association between light and life, and a biophysical hypothesis of the conscious self that could survive death of the body. All living organisms emit low-intensity light; at the time of death, that radiation is ten to 1,000 times stronger than that emitted under normal conditions. This “deathflash” is independent of the cause of death, and reflects in intensity and duration the rate of dying. The vision of intense light reported in near-death experiences may be related to this deathflash, which may hold an immense amount of information. The electromagnetic field produced by necrotic radiation, containing energy, internal structure, and information, may permit continuation of consciousness beyond the death of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banquet, J. P. (1973). Spectral analysis of the EEG in meditation.Electroencephalography and clinical neurophysiology, 35, 143–151.

    Google Scholar 

  • Banquet, J. P., and Sailhan, M. (1974). Analyse EEG d'etats de conscience induits et spontanes.Revue d'Electroencephalographie et de Neurophysiologie Clinique, 4, 445–453.

    Google Scholar 

  • Barenboim, G. M., Domanski, A. N., and Turoverov, K. K. (1969).Luminescence of biopolymers and cells. New York, NY: Plenum.

    Google Scholar 

  • Burr, H. S. (1972). The fields of life: Our links with the universe. New York, NY: Ballantine.

    Google Scholar 

  • Capra, F. (1976).The tao of physics. Boulder, CO: Shambhala.

    Google Scholar 

  • Capra, F. (1982).The turning point, New York, NY: Simon and Schuster.

    Google Scholar 

  • Conniff, R. (1982). “Supergene”.Science Digest, 90 (3), 63–65 & 110–111.

    Google Scholar 

  • Dumitrescu, I., and Kenyon, J. N. (1983).Electrographic methods in medicine and biology. Suffolk, England: Neville Spearman.

    Google Scholar 

  • Ferguson, M. (1980).The aquarian conspiracy: Personal and social transformations in the 1980s. Los Angeles, CA: J. P. Tarcher.

    Google Scholar 

  • Forward, R. L. (1980). Spinning new realities: theorist Roger Penrose gives Einstein's universe a new twist.Science 80, 1(8), 40–49.

    Google Scholar 

  • Fröhlich, H. (1980). The biological effects of microwaves and related questions.Advances in Electronics and Electron Physics, 53, 85–152.

    Google Scholar 

  • Garbuny, M. (1978). Gas-kinetic cooling process by coherent radiation. In L. Mandel and E. Wolf (Eds.),Coherence and quantum optics. IV. Proceedings of the 4th Rochester Conference on Coherence and Quantum Optics (pp. 737–746). New York, NY: Plenum.

    Google Scholar 

  • Gulyaev, P. I., Zabotin, V. I., Shlippenbach, N. J., and Egorov, V. N. (1981). [Time-space structure or aural electric field of frog isolated nerve preparation.]Biofizika, 26, 108–112.

    Google Scholar 

  • Hawking, S. W., and Penrose, R. (1970). Singularities of gravitational collapse and cosmology.Proceedings of the Royal Society of London, Series A., 314, 529–548.

    Google Scholar 

  • Kaznacheiev, V. P., and Mikhailova, L. P. (1981).Ultraweak luminescence in intercellular interactions. Novosibirsk, USSR: Publ. Hause Nauka.

    Google Scholar 

  • Kübler-Ross, E. (1969).On death and dying, New York, NY: Macmillan.

    Google Scholar 

  • Li, K. H., and Popp, F. A. (1983). Non-exponential decay law of radiation systems with coherent rescattering.Physics Letters, A, 93, 262–266.

    Google Scholar 

  • Li, K. H., Popp, F. A., Nagl, W., and Klima, H. (1983). Indications of optical coherence in biological systems and its possible significance. In H. Fröhlich and F. Kremer (Eds.),Coherent excitation in biological systems (pp. 117–122). New York: Springer-Verlag.

    Google Scholar 

  • Moody, R. A. (1975).Life after life. Covington, GA: Mockingbird Books.

    Google Scholar 

  • Popp, F. A. (1979). Photon storage in biological systems. In F. A. Popp, G. Becker, H. L. König, and W. Peschka, (Eds.),Electromagnetic bioinformation (pp. 123–149). Baltimore, MD: Urban and Schwartzenberg.

    Google Scholar 

  • Quickenden, T. I., and Que Hee, S. S. (1981). On the existence of mitogenic radiation.Speculations in science and technology, 4, 453–464.

    Google Scholar 

  • Rattemeyer, M. (1979). Interpretation der Ultraschwachen Photonenemission aus biologischen Systemen. Unpublished M. Sc. Dissertation, Marburg University (Germany).

    Google Scholar 

  • Rattemeyer, M., Popp, F. A., and Nagl, W. (1981). Evidence of photon-emission from DNA in living systems.Die Naturwissenschaften, 68, 572–573.

    Google Scholar 

  • Sedlak, W. (1969). Fundamentals of the electromagnetic life theory.Kosmos, A, 18, 165–174

    Google Scholar 

  • Sedlak, W. (1972). Biological lasers,Kosmos, A, 21, 533–545.

    Google Scholar 

  • Sedlak, W. (1979). Bioelektronika, Warsaw, Poland: Publishing Institute of PAX Association.

    Google Scholar 

  • Sedlak, W. (1980). Homo electronicus. Warsaw, Poland: State Publishing Institute (PIW).

    Google Scholar 

  • Seliger, H. H. (1980). Single photon counting and spectroscopy of low-intensity chemiluminescent reactions. In C. T. Peng, D. L. Horrocks, and E. L. Alpen (Eds.),Liquid scintillation counting. Volume 2: Sample preparation and applications (pp. 281–320). New York, NY: Academic Press.

    Google Scholar 

  • Slawinska, D., and Slawinski, J. (1983). Biological chemi-luminescence.Photochemistry and Photobiology, 37, 709–715.

    Google Scholar 

  • Slawinska, D., and Slawinski, J. (1985). Low level luminescence from biological objects. In J. Burr, (Ed.),Chemiluminescence and bioluminescence (pp. 494–600). New York, NY: Marcel Dekker.

    Google Scholar 

  • Slawinski, J. (1982). Excited states and photons as possible information-control factors of vital processes.Postepy fizyki medycznej, 17, 59–68.

    Google Scholar 

  • Slawinski, J., Grabikowski, E., and Ciesla, L. (1981). Spectral distributions of the ultraweak luminescence from germinating plants.Journal of Luminescence, 24/25, 791–794.

    Google Scholar 

  • Taylor, E. P., and Wheeler, J. A. (1966).Spacetime Physics. San Francisco, CA. Freeman.

    Google Scholar 

  • Taylor, J. G. (1975).Superminds, New York, NY: Viking.

    Google Scholar 

  • von Laue, M. (1906). Zur Thermodynamik der Interferenzerscheinungen,Annalen der Physik, 20, 365–378.

    Google Scholar 

  • von Laue, M. (1907). Die Entropie von partiell Koharenten Strahlenbundein.Annalen der Physik, 23, 1–43.

    Google Scholar 

  • Walker, E. H. (1970). The nature of consciousness.Mathematical Biosciences, 7, 131–178.

    Google Scholar 

  • Walker, E. H., and Herbert, N. (1977). Hidden variables: Where physics and the paranormal meet. In J. White, and S. Krippner (Eds.).Future science: Life energies and the physics of paranormal phenomena (pp. 245–256). Garden City, NY: Doubleday/Anchor.

    Google Scholar 

  • Walker, I. (1972). Biological Memory.Acta Biotheoretica 21, 203–235.

    Google Scholar 

  • Walls, D. F. (1983). Squeezed states of light.Nature, 306, 141–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slawinski, J. Electromagnetic radiation and the afterlife. J Near-Death Stud 6, 79–94 (1987). https://doi.org/10.1007/BF01073390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01073390

Keywords

Navigation