Skip to main content
Log in

Symmetry algebras of linear differential equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ovsyannikov,Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. N. Kh. Ibragimov,Transformation Groups in Methematical Physics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  3. P. J. Olver,Applications of Lie Groups to Differential Equations, Springer Verlag, New York (1986). [The pagination given in the text refers to the Russian translation published by Mir. Moscow (1989).]

    Google Scholar 

  4. V. N. Shapovalov,Izv. Vyssh. Uchebn. Zaved. Fiz., No. 6, 57 (1977).

    Google Scholar 

  5. N. Kh. Ibragimov and A. B. Shabat,Dokl. Akad. Nauk SSSR,244, 57 (1979).

    Google Scholar 

  6. A. V. Zhiber and A. B. Shabat,Dokl. Akad. Nauk SSSR,247, 1103 (1979).

    Google Scholar 

  7. R. Kaliappan and M. Lakshmanan,J. Math. Phys.,23, 456 (1982).

    Google Scholar 

  8. V. I. Fushchich and A. G. Nikitin,Symmetry of Maxwell's Equations [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  9. E. G. Kalnins, W. Miller (Jr.), and G. C. Williams,J. Math. Phys.,27, 1893 (1986).

    Google Scholar 

  10. G. J. Weir, “Conformal Killing tensors in reducible spaces,” Res. Rep. No. 2, Dept. of Math., University of Canterbury, Christchurch, N.Z. (1979).

    Google Scholar 

  11. W. Miller (Jr.),Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  12. V. G. Bagrov, D. M. Gitman, et al.,Exact Solutions of Relativistic Wave Equations [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  13. A. M. Vinogradov, I. S. Krasil'shchik, and V. V. Lychagin,Introduction to the Geometry of Nonlinear Differential Equations [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  14. A. G. Meshkov,Teor. Mat. Fiz. 55, 197 (1983).

    Google Scholar 

  15. A. G. Nikitin and A. I. Prilipko, in:Symmetry and Solutions of the Equations of Mathematical Physics [in Russian] Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1989), p. 40.

    Google Scholar 

  16. V. G. Bagrov, B. F. Samsonov, A. V. Shapovalov, and I. V. Shirokov,Teor. Mat. Fiz.,83, 14 (1990).

    Google Scholar 

  17. D. F. Zhelobenko and A. I. Shtern,Representations of Lie Groups [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  18. V. G. Bagrov, A. V. Shapovalov, and I. V. Shirokov,Izv. Vyssh. Uchebn. Zaved. Fiz., No. 9, 14 (1991).

    Google Scholar 

Download references

Authors

Additional information

Tomsk State University. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 92, No. 1, pp. 3–12, July, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapovalov, A.V., Shirokov, I.V. Symmetry algebras of linear differential equations. Theor Math Phys 92, 697–703 (1992). https://doi.org/10.1007/BF01018697

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01018697

Keywords

Navigation