Skip to main content
Log in

Integumentary resorption and collagen synthesis during regression of headless pedicellariae in Sphaerechinus granularis (Echinodermata: Echinoidea)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Ultrastructure of the resorption of integumentary tissues (ligaments, muscles, fibrous tissue, nerves, and skeleton) and the synthesis of collagen is described for the first time in echinoderms. Resorption is cell-mediated. Phagocytic cells are characterized by Golgi-derived putative primary lysosomes. Numerous secondary lysosomes and residual bodies occur in the bodies and processes of phagocytic cells. They engulf whole muscle cells and nerve fibres, as well as collagen fibril segments that exceed 1.5 μm in length. Skeletoclastic cells resemble vertebrate osteoclasts, showing a ruffled border, lysosomes, and numerous mitochondria. They surround trabeculae with thick processes to delimit a tubular resorption site. Collagen synthesis occurs in the space formerly occupied by resorbed tissues. Synthesis is performed by fibroblastic cells containing organelles typical of vertebrate fibroblasts, namely distended cisternae of rough endoplasmic reticulum, Golgi cisternae with distended edges, and procollagen granules. Procollagen granules are apparently exocytosed directly to the extracellular matrix. Evidence indicates that resorbing (phagocytic and skeletoclastic) cells and fibroblastic cells may belong to a common phagocyte lineage. These cells share the ability to form elaborate processes and to become syncytial, and their nuclei exhibit iron-containing crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann S, Goldschmid A (1978) Fine structure of the axial complex of Sphaerechinus granularis (Lam.) (Echinodermata: Echinoidea). Cell Tissue Res 193:107–123

    Google Scholar 

  • Beig D, Da Cruz-Landim C (1975) Sperm reabsorption in sea urchin (Echinometra locunter). Ciência Cultura 27:221–228

    Google Scholar 

  • Birk DE, Trelstad RL (1985) Metazoan mesenchyme partitions the extracellular space during matrix morphogenesis. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 103–114

    Google Scholar 

  • Bureau F, Dubois P, Ghyoot M, Jangoux M (1991) Skeleton resorption in echinoderms: Regression of pedicellarial stalks in Sphaerechinus granularis (Echinodermata). Zoomorphology 110:217–226

    Google Scholar 

  • Campbell AC (1983) Form and function of pedicellariae: a review. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 1. A.A. Balkema, Rotterdam, pp 139–167

    Google Scholar 

  • Candia-Carnevali MD, Lucca E, Bonasoro F (1993) Mechanisms of arm regeneration in the feather star Antedon mediterranea: healing of wound and early stages of development. J Exp Zool 267:299–317

    Google Scholar 

  • Chia F-S (1970) Histology of the globiferous pedicellariae of Psammechinus miliaris (Echinodermata, Echinoidea). J Zool (London) 160:9–16

    Google Scholar 

  • Chia F-S, Burke RD (1978) Echinoderm metamorphosis: fate of larval structures. In: Chia F-S, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 219–234

    Google Scholar 

  • Dubois P, Chen C-P (1989) Calcification in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 3. A.A. Balkema, Rotterdam, pp 109–178

    Google Scholar 

  • Dubois P, Bureau F, Ghyoot M (1994) Induction of tissue resorption in globiferous pedicellariae of the echinoid Sphaerechinus granularis. In: David B, Guille A, Féral J-P, Roux M (eds) Echinoderms through time. A.A. Balkema, Rotterdam, pp 643–646

    Google Scholar 

  • Féral J-P (1988) Wound healing after arm amputation in Sepia officinalis (Cephalopoda: Sepioidea). J Invert Pathol 52:380–388

    Google Scholar 

  • Ferrand J-G (1983) Ultrastructural analysis of oocyte lysis and phagocytic activity in gonals of Asterina gibbosa P. (Echinodermata: Asteroidea). Internat J Invert Reprod 6:21–29

    Google Scholar 

  • Ganter P, Jollès G (1970) Histochimie normale et pathologique, vol 2. Gauthiers-Villars, Paris

    Google Scholar 

  • Ghyoot M, Jangoux M (1988) The fine structure of the globiferous pedicellariae of Sphaerechinus granularis (Echinoidea): innervation of the stalk. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. A.A. Balkema, Rotterdam, pp 713–717

    Google Scholar 

  • Ghyoot M, Dubois P, Jangoux M (1990) Ultrastructure and presumed origin of the phagocytic cells involved in the regression of headless stalks of globiferous pedicellariae in the echinoid Sphaerechinus granularis (Echinodermata). In: De Ridder C, Dubois P, Lahaye M-C, Jangoux M (eds) Echinoderm research. A.A. Balkema: Rotterdam, pp 239–245

    Google Scholar 

  • Grimmer JC, Holland ND, Messing CG (1984) Fine structure of the stalk of the bourgeticrinid sea lily Democrinus conifer (Echinodermata: Crinoidea). Mar Biol (Berlin) 81:163–176

    Google Scholar 

  • Heatflied BM, Travis DF (1975a) Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. I. Cell types without spherules. J Morphol 145:13–50

    Google Scholar 

  • Heatfield BM, Travis DF (1975b) Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. II. Cell types with spherules. J Morphol 145:51–72

    Google Scholar 

  • Hilgers H, Splechtna H (1982) Zur Steuerung der Ablös ung Giftpedizellarien bei Sphaerechinus granularis (Lam.) und Paracentrotus lividus (Lam.) (Echinodermata, Echinoidea). Zool Jahrb Anat 107:442–457

    Google Scholar 

  • Holland LZ, Holland ND (1975) The fine structure of epidermal glands of regenerating and mature globiferous pedicellariae of a sea urchin (Lytechinus pictus). Tissue Cell 7:723–737

    Google Scholar 

  • Holland ND, Grimmer JC (1981) Fine structure of the ciari and a possible mechanism for their motility in stalkless crinoids (Echinodermata). Cell Tissue Res 214:207–217

    Google Scholar 

  • Hunt TK, Banda MJ, Silver IA (1985) Cell interactions in posttraumatic fibrosis. Ciba Found Symp 114:127–149

    Google Scholar 

  • Jensen M (1966) The response of two sea-urchins to the sea-star Marthasterias glacialis (L.) and other stimuli. Ophelia 3:209–219

    Google Scholar 

  • Märkel K, Röser U (1983a) Calcite resorption in the spine of the echinoid Eucidaris tribuloides. Zoomorphology 103:43–58

    Google Scholar 

  • Märkel K, Röser U (1983b) The spine tissues in the echinoid Eucidaris tribuloides. Zoomorphology 103:25–41

    Google Scholar 

  • Märkel K, Röser U (1985) Comparative morphology of echinoderm calcified tissues: histology and ultrastructure of ophiuroid scales (Echinodermata, Ophiuroida). Zoomorphology 105:197–207

    Google Scholar 

  • Märkel K, Röser U, Mackenstedt U, Klostermann M (1986) Ultrastructural investigations of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoidea). Zoomorphology 106:232–243

    Google Scholar 

  • Marks SC Jr, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183:1–44

    Google Scholar 

  • Masuda R, Dan JC (1977) Studies on the annual reproductive cycle of the sea urchin and the acid phosphotase activity of relict ova. Biol Bull, Woods Hole 153:577–590

    Google Scholar 

  • Menton DN, Eisen AZ (1973) Cutaneous wound healing in the sea cucumber Thyone briareus. J Morphol 141:185–204

    Google Scholar 

  • Mladenov PV, Bisgrove B, Asotra S, Burke RD (1989) Mechanisms of arm-tip regeneration in the sea star, Leptasterias hexactis. Roux's Arch Develop Biol 198:19–28

    Google Scholar 

  • Parakkal PE (1969) Involvement of macrophages in collagen resorption. J Cell Biol 41:345–354

    Google Scholar 

  • Pérès JM (1950) Recherches sur les pedicellaires glandulaires de Sphaerechinus granularis (Lamarck). Arch Zool Exp Gén 86:118–136

    Google Scholar 

  • Ralphs JR, Brown RA (1986) A characteristic secretory organelle in early osteoblastic cells: a fibrillar inclusion body. In: Ali SY (ed) Cell mediated calcification and matrix vesicles. Elsevier, Amsterdam, pp 167–172

    Google Scholar 

  • Richardson KC, Jarret L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    Google Scholar 

  • Sire J-Y (1985) The deep scleroblast of the regenerating teleost scale: a model of cell producing a collagenic plywood. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 465–470

    Google Scholar 

  • Sire J-Y, Huysseune A, Meunier FJ (1990) Osteoclasts in teleost fish: light- and electron-microscopical observations. Cell Tissue Res 260:85–94

    Google Scholar 

  • Ten Cate AR, Deporter DA (1975) The degradative role of the fibroblast in the remodelling and turnover of collagen in soft connective tissue. Anat Rec 182:1–14

    Google Scholar 

  • Trelstad RL (1971) Vacuoles in the embryonic chick corneal epithelium, an epithelium which produces collagen. J Cell Biol 48:689–694

    Google Scholar 

  • Trelstad RL, Birk DE (1985) The fibroblast in morphogenesis and fibrosis: cell topography and surface-related functions. Ciba Found Symp 114:4–19

    Google Scholar 

  • Trelstad RL, Hayashi K (1979) Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth. Develop Biol 71:228–242

    Google Scholar 

  • Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. Clin Orthoped 231:239–271

    Google Scholar 

  • Vanden Bossche JP, Jangoux M (1976) Epithelial origin of starfish coelomocytes. Nature 261:227–228

    Google Scholar 

  • Walker CW (1979) Ultrastructure of the somatic portion of the gonads in asteroids, with emphasis on flagellated-collar cells and nutrient transport. J Morphol 162:127–162

    Google Scholar 

  • Walker CW (1980) Spermatogenic columns, somatic cells, and the microenvironment of germinal cells in the testes of asteroids. J Morphol 166:81–107

    Google Scholar 

  • Weber W, Grosmann M (1977) Ultrastructure of the basiepithelial nerve plexus of the sea urchin Centrostephanus longispinus. Cell Tissue Res 175:551–562

    Google Scholar 

  • Weinstock M, Leblond CP (1974) Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after 3H-proline administration. J Cell Biol 60:92–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by Contract 2.4527.89 from the Fonds de la Recherche Fondamentale Collective (Belgium). P.D. is a Research Associate of the National Fund for Scientific Research (Belgium). Contribution of the Centre Interuniversitaire de Biologie Marine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, P., Ghyoot, M. Integumentary resorption and collagen synthesis during regression of headless pedicellariae in Sphaerechinus granularis (Echinodermata: Echinoidea). Cell Tissue Res 282, 297–309 (1995). https://doi.org/10.1007/BF00319120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319120

Key words

Navigation