Skip to main content
Log in

The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh.

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

By selecting for germinating seeds in the progeny of mutagen-treated non-germinating gibberellin responsive dwarf mutants of the ga−1 locus in Arabidopsis thaliana, germinating lines (revertants) could be isolated. About half of the revertants were homozygous recessive for a gene (aba), which probably regulates the presence of abscisic acid (ABA). Arguments for the function of this gene were obtained from lines homozygous recessive for this locus only, obtained by selection from the F2 progeny of revertant X wild-type crosses. These lines are characterized by a reduced seed dormancy, symptoms of withering, increased transpiration and a lowered ABA content in developing and ripe seeds and leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GA4+7 :

Mixture of gibberellin A4 and A7

EMS:

Ethylmethanesulfonate

NG:

Non-germinating

G:

Germinating

Literature

  • Goldbach, H.; Michael, G. (1976): Abscisic acid content of barley grains during ripening as affected by temperature and variety. Crop Sci. 16, 787–800

    Google Scholar 

  • Gustafsson, Å.; Hagberg, A.; Lundqvist, U.; Persson, G. (1967): A proposed system of symbols for the collection of barley mutants at Svalöv. Hereditas 62, 409–414

    Google Scholar 

  • Imber, D.; Tal., M. (1970): Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169, 592–593

    Google Scholar 

  • Jones, R.L.; Stoddart, J.L. (1977): Gibberellins and seed germination. In: The Physiology and Biochemistry of Seed Dormancy and Germination (ed.: Khan, A.A.), pp. 77–109. Amsterdam: Elsevier/North-Holland

    Google Scholar 

  • Karssen, C.M.; Jorna, M.L.; van der Swan, D.L.C.; Koornneef, M. (1980): Observations on the induction of dormancy in abscisic acid deficient mutants of Arabidopsis thaliana. Abstracts of the Symposium Aspects and Prospects of Plant Growth Regulators. Wageningen: CABO 38

    Google Scholar 

  • Knegt, E.; Vermeer, E.; Bruinsma, J. (1981): The combined determination of Indolyl-3-acetic acid and abscisic acids in plant materials. Anal. Biochem. 114, 362–366

    Google Scholar 

  • Koornneef, M. (1978): Gibberellin-sensitive mutants in Arabidopsis thaliana. Arabidopsis Inf. Serv. 15, 17–20.

    Google Scholar 

  • Koornneef, M. (1979): Intragenic recombination within the ga-1 locus of Arabidopsis thaliana. Arabidopsis Inf. Serv. 16, 41–47

    Google Scholar 

  • Koornneef, M.; van der Veen, J.H. (1978): Gene localization with trisomics in Arabidopsis thaliana. Arabidopsis Inf. Serv. 15, 38–44

    Google Scholar 

  • Koornneef, M.; van der Veen, J.H. (1980): Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58, 257–263

    Google Scholar 

  • Koornneef, M.; Barbara, A.; van der Veen, J.H. (1977): Nongerminating, gibberellin acid responsive mutants in Arabidopsis thaliana. Arabidopsis Inf. Serv. 14, 14–17

    Google Scholar 

  • Koornneef, M.; Dellaert, L.W.M.; van der Veen, J.H. (1982): EMS and radiation induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat. Res. (in press)

  • Koornneef, M.; Jorna, M.L.; van der Swan, D.L.C.; Karssen, C.M. (1980): The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis. Arabidopsis Inf. Serv. 17, 99–102

    Google Scholar 

  • Koornneef, M.; van der Veen, J.H.; Spruit, C.J.P.; Karssen, C.M. (1981): The isolation and use of mutants with an altered germination behaviour in Arabidopsis thaliana and tomato. In: Induced Mutations as a Tool for Crop Plant Improvement. Vienna: IAEA-SM 251, 227–232

    Google Scholar 

  • Largué-Saavedra, A.; Wain, R.L. (1974): Abscisic acid levels in relation to drought tolerance in varieties of Zea mays L. Nature 251, 716–717

    Google Scholar 

  • Largué-Saavedra, A.; Wain, R.L. (1976): Studies on plant growth-regulating substances. X. II. Abscisic acid as a genetic character related to drought tolerance. Ann. Appl. Biol. 83, 291–297

    Google Scholar 

  • Lee, J.M.; Looney, N.E. (1977): Abscisic acid levels and genetic compaction in apple seedlings. Can. J. Plant Sci. 57, 81–85

    Google Scholar 

  • McDaniel, S.; Smith, J.D.; James-Price, H. (1974): Response of viviparous mutants to abscisic acid in embryo culture. Maize Genetics Coop. Newsletter 51, 85–86

    Google Scholar 

  • Nevo, Y.; Tal, M. (1973): The metabolism of abscisic acid in flacca, a wilty mutant of tomato. Biochem. Genet. 10, 79–90

    Google Scholar 

  • Oostindiër-Braaksma, F.J.; Feenstra, W.J. (1973): Isolation and characterization of chlorate resistant mutants in Arabidopsis thaliana. Mutat. Res. 19, 175–185

    Google Scholar 

  • Redei, G.P. (1962): Single locus heterosis. Z. Vererbungsl. 93, 164–170

    Google Scholar 

  • Robertson, D.S. (1955): The genetics of vivipary in maize. Genetics 40, 745–760

    Google Scholar 

  • Smith, J.D.; McDaniel, S.; Lively, S. (1978): Regulation of embryo growth by abscisic acid in vitro. Maize Genetics Coop. Newsletter 52, 107–108

    Google Scholar 

  • Stevens, W.L. (1939): Tables of the recombination fraction estimated from the product ratio. J. Genet. 39, 171–180

    Google Scholar 

  • Stubbe, H. (1957): Mutanten der Kulturtomate Lycopersicon esculentum, Miller I. Kulturpflanze 5, 190–220

    Google Scholar 

  • Stubbe, H. (1958): Mutanten der Kulturtomate Lycopersicon esculentum, Miller II. Kulturpflanze 6, 89–115

    Google Scholar 

  • Stubbe, H. (1959): Mutanten der Kulturtomate Lycopersicon esculentum, Miller III. Kulturpflanze 7, 82–112

    Google Scholar 

  • Tal, M. (1966): Abnormal stomatal behaviour in wilty mutants of tomato. Plant Physiol. 41, 1387–1391

    Google Scholar 

  • Tal. M.; Nevo, Y. (1973): Abnormal stomatal behaviour and root resistance and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8, 291–300

    Google Scholar 

  • Wallace, R.H.; Habermann, H.M. (1958): Absence of seed dormancy in a white mutant strain of Helianthus annuus L. Plant Physiol. 33, 252–254

    Google Scholar 

  • Walton, D.C. (1980): Biochemistry and physiology of abscisic acid. Ann. Rev. Plant Physiol. 31, 453–489

    Google Scholar 

  • Wong, J.R.; Sussex, J.M. (1980): Isolation of abscisic acid-resistant variants from tobacco cell cultures. II. Selection and characterization of variants. Planta 148, 103–107

    Google Scholar 

  • Yadava, U.L.; Lockard, R.G. (1977): Abscisic acid and gibberellin in three ungrafted apple (Malus sylvestris) rootstock clones. Physiol. Plant. 40, 225–229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. von Wettstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koornneef, M., Jorna, M.L., Brinkhorst-van der Swan, D.L.C. et al. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh.. Theoret. Appl. Genetics 61, 385–393 (1982). https://doi.org/10.1007/BF00272861

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272861

Key words

Navigation