Skip to main content
Log in

Thermostable alkaline protease produced by Bacillus thermoruber — a new species of Bacillus

  • Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The proteolytic activity produced by a new species of Bacillus isolated in our laboratory was investigated. This enzyme was purified to homogeneity from cell-free culture liquids of B. thermoruber. The purification procedure included ion-exchange chromatography on DEAE-Sephadex A-50 and α-casein agarose affinity chromatography. The protease consists of one polypeptide chain with a molecular weight of 39000±800. the isoelectric point was 5.3; the optimum pH and temperature for proteolytic activity (on casein) was found to be pH 9 and 45°C respectively. Enzyme activity was inhibited by PMSF and EDTA. The stability was considerably increased by addition of Ca2+, and the protease exhibited a relatively high thermal stability. The alkaline protease shows a preference for leucine in the carboxylic side of the peptide bond of the substrate. The K m value for benzyloxycarbonyl-Ala-Ala-Leu-p-nitroanilide was 2.5 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews P (1964) Estimation of the molecular weights of proteins by Sephadex gel filtration. Biochem J 91:222–232

    Google Scholar 

  • Cheetham PSJ (1985) The applications of enzymes in industry. In: Wiseman A (ed) Handbook of enzyme biotechnology. Ellis Horwood Limited Publ., Chichester, London, pp 274–379

    Google Scholar 

  • Debabov VG (1982) The industrial use of Bacilli. In: Dubnau DA (ed) The molecular biology of the Bacilli. Academic Press, New York, pp 331–370

    Google Scholar 

  • Gnosspelius G (1978) Purification and properties of an extracellular protease from Myxococcus virescens. J Bacteriol 133:17–25

    Google Scholar 

  • Izotova LS, Strongin AY, Chekulaeva LN, Sterkin VE, Ostoslavskaya VI, Lyublinskaya LA, Timokhina EA, Stepanov VM (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155:826–830

    Google Scholar 

  • Kato N, Adachi S, Takeuchi K, Morihara K, Tani Y, Ogata K (1974) Substrate specificities of the protease from a marine-psychrophilic bacterium, Pseudomonas sp No 548. Agric Biol Chem 38:103–109

    Google Scholar 

  • Kelly CT, Fogarty WM (1976) Microbial alkaline enzymes. Process Biochemistry 11:3–9

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structure proteins during assembly of the head of bacteriophage T4. Nature 277:680–685

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AF, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Manachini PL, Fortina MG, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35:493–496

    Google Scholar 

  • Moore WEC, Hash DE, Holdeman LV, Cato EP (1980) Polyacrylamide slab gel electrophoresis of soluble proteins for studies of bacterial floras. Appl Environ Microbiol 39:900–907

    Google Scholar 

  • Morihara K (1974) Comparative specificity of microbial proteinases. Adv Enzymol 41:179–243

    Google Scholar 

  • Strongin AYA, Izotova LS, Abramov ZT, Gorodetsky DI, Ermakova LM, Baratova LA, Belyanova LP, Stepanov VM (1978) Intracellular serine protease of Bacillus subtilis: sequence homology with extracellular subtilisins. J Bacteriol 133:1401–1411

    Google Scholar 

  • Strongin AYA, Abramov ZT, Yaroslavtseva NG, Baratova LA, Shaginyan KA, Belyanova LP, Stepanov VM (1979) Direct comparison of subtilisin-like intracellular protease of Bacillus licheniformis with the homologous enzymes of Bacillus subtilis. J Bacteriol 137:1017–1019

    Google Scholar 

  • Ward OP (1983) Proteinases. In: Fogarty WM (ed) Microbial enzymes and biotechnology. Applied Science Publ, New York, pp 251–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manachini, P.L., Fortina, M.G. & Parini, C. Thermostable alkaline protease produced by Bacillus thermoruber — a new species of Bacillus . Appl Microbiol Biotechnol 28, 409–413 (1988). https://doi.org/10.1007/BF00268205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268205

Keywords

Navigation