Skip to main content
Log in

Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

For optimization of the transformation procedure with Pisum sativum L. stern explant callus was used to test the effect of disarmed Agrobacterium tumefaciens strains, cocultivation procedures (preconditioning of explants; use of Nicotiana tabacum L. nurse cultures), duration of cocultivation (2, 3 or 4 days), and agents for selection (kanamycin or hygromycin). The succinamopine strain EHA101(pBI1042) produced the highest percentage of transformed calli (77%) when used in conjunction with tobacco nurse culture during four days of cocultivation. Using this strain, kanamycin (76%) and hygromycin (77%) were equally effective selective agents, but for strain LBA4404(pBI1042) percentage of transformed calli was higher for hygromycin (63%) than for kanamycin (17%). The procedures and strains shown to be optimal for transformation of pea callus will now be complemented by a pea regeneration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekkaoui F, Datla RSS, Pilon M, Tautoms TE, Crosby WL, Dunstan DI (1990) Theor. Appl. Genet. 79: 353–359.

    Google Scholar 

  • Chabaud M, Passiatore JE, Cannon F, Buchanan-Wollaston V (1988) Plant Cell Rep. 7: 512–516.

    Google Scholar 

  • Culianez-Macia FA, Hepburn AK (1988) Plant Mol. Biol. 11: 389–399.

    Google Scholar 

  • Datla RSS, Hammerlindt J, Crosby WL, Selveraj G (1990) submitted.

  • Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Mol. & Applied Gen. 1: 561–573.

    Google Scholar 

  • Fillati JJ, Kiser J, Rose R, Comai L (1987) Bio/Technology 5: 726–730.

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick JS, Fink CL, Hoffmann NL, Sanders PR (1985) Bio/Technology 3: 629–635.

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Exp. Cell Res. 50: 151–158.

    Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Bio/Technology 6: 915–922.

    Google Scholar 

  • Hobbs SLA, Jackson JA, Mahon JD (1989) Plant Cell Rep. 8: 274–277.

    Google Scholar 

  • Hobbs SLA, Jackson JA, Baliski DS, DeLong CMO, Mahon JD (1990) Plant Cell Rep. 9: 17–20.

    Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) J. Bacteriol. 168: 1291–1301.

    Google Scholar 

  • Jackson JA, Hobbs SLA (1990) Plant Cell Rep. in press.

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J 6: 3901–3907.

    CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) Mol. Gen. Genet. 204: 383–396.

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Plant Cell Rep. 5: 81–84.

    Google Scholar 

  • Messing J (1983) Meth. Enzymol. 101: 20–78

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Ooms G, Hooykaas PJJ, Moolenaar G, Schilperoot RA (1981) Gene: 14: 33–50.

    Google Scholar 

  • Peralta EG, Ream W (1985) Proc. Natl. Acad. Sci. USA 82: 5112–5116.

    Google Scholar 

  • Puonti-Kaerlas J, Stabel P, Eriksson T (1989) Plant Cell Rep. 8: 321–324.

    Google Scholar 

  • Rogers SG, Horsch RB, Fraley RT (1986) Meth. Enzymol. 118: 627–640.

    Google Scholar 

  • Rogers SG, Klee HJ, Horsch RB, Fraley RT (1987) Meth. Enzymol. 153: 253–277.

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Can. J. Bot. 50: 199–204.

    Google Scholar 

  • Schmidt R, Willmitzer L (1988) Plant Cell Rep. 7: 583–586.

    Google Scholar 

  • Scott R, Draper J, Jefferson R, Dury G, Jacob L (1988) In: Draper J, Scott R, Armitage P, Walden R (eds) Plant Genetic Transformation and Gene Expression, Blackwell Scientific Pub., Oxford, pp. 263–339.

    Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987). J. Bacteriol. 169: 5789–5794.

    Google Scholar 

  • Vahala T, Stabel P, Eriksson T (1989) Plant Cell Rep. 8: 55–58.

    Google Scholar 

  • Zyprian E, Kado CI (1990) Plant Mol. Biol. 15: 245–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Constabel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lulsdorf, M.M., Rempel, H., Jackson, J.A. et al. Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Reports 9, 479–483 (1991). https://doi.org/10.1007/BF00232100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232100

Keywords

Navigation