Skip to main content
Log in

The DMS-cloud albedo feedback effect: Greatly underestimated?

  • Correspondence
  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

There are a number of ways by which the biosphere may counter any impetus for global warming that might be produced by the rising CO2 content of earth's atmosphere. Evidence for one of these phenomena, the DMS-cloud feedback effect, is discussed in light of recent claims that it is not of sufficient strength to be of much importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams, D. F., Farwell, S. O., Robinson, E., Pack, M. R., and Bamesberger, W. L.: 1981, ‘Biogenic Sulfur Source Strengths’, Environ. Sci. Tech. 15, 1493–1498.

    Google Scholar 

  • Andreae, M. O.: 1986, in Buat-Mendard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, Kluwer Academic Publishers, Dordrecht, Holland, pp. 331–362.

    Google Scholar 

  • Andreae, M. O. and Barnard, W. R.: 1984, ‘Exchange of Dimethyl Sulfide from Ocean to Atmosphere,’ Mar. Chem. 14, 267–279.

    Google Scholar 

  • Barnard, W. R., Andreae, M. O., Watkins, W. R., Bingemer, H., and Georgii, H.-W.: 1982, ‘The Flux of Dimethyl Sulfide from the Ocean to the Atmosphere’, J. Geophys. Res. 87, 8787–8793.

    Google Scholar 

  • Bates, T. S., Charlson, R. J., and Gammon, R. H.: 1987, ‘Evidence for the Climatic Role of Marine Biogenic Sulfur,’ Nature 329, 319–321.

    Google Scholar 

  • Burgermeister, S., Zimmerman, R. L., Georgii, H.-W., Bingemer, H. G., Kirst, G. O., Janssen, M., and Ernst, W.: 1990, ‘On the Biogenic Origin of Dimethylsulfide: Relation Between Chlorophyll, ATP, Organismic DMSP, Phythoplankton Species, and DMS Distribution in Atlantic Surface Water and Atmosphere’, J. Geophys. Res. 95, 20607–20615.

    Google Scholar 

  • Charlson, R. J., Langner, J., and Rodhe, H.: 1990, ‘Sulphate Aeorosol and Climate’, Nature 348, 22.

    Google Scholar 

  • CLIMAP Project Members: 1981, ‘Seasonal Reconstructions of the Earth's Surface at the Last Glacial Maximum’, in McIntyre, A. and Cline, R. (eds.), Map Charts Ser. MC 36, Geol. Soc. Amer., Boulder.

    Google Scholar 

  • DeAngelis, M., Barkov, N. I., and Petrov, V. N.: 1987, ‘Aerosol Concentrations over the Last Climate Cycle (160 kyr) from an Antarctic Ice Core’, Nature 325, 318–321.

    Google Scholar 

  • DeAngelis, M., Jouzel, J., Lorius, C., Merlivat, R., Petit, J.-R., and Raynaud, D.: 1984, ‘Ice Age Data for Climate Modelling from an Antarctic (Dome C) Ice Core’, in Berger, A. L. and Nicolis, C. (eds.), New Perspectives in Climate Modelling, Elsevier Science Publ., New York, pp. 23–45.

    Google Scholar 

  • Eppley, R. W.: 1972, ‘Temperature and Phytoplankton Growth in the Sea’, Fish. Bull. 70, 1063–1085.

    Google Scholar 

  • Erickson, D. J. III, Ghan, S. J., and Penner, J. E.: 1990, ‘Global Ocean-to-Atmosphere Dimethyl Sulfide Flux’, J. Geophys. Res. 95, 7543–7552.

    Google Scholar 

  • Foley, J. A., Taylor, K. E., and Ghan, S. J.: 1991, ‘Planktonic Dimethylsulfide and Cloud Albedo: An Estimate of the Feedback Response’, Climatic Change 18, 1–15.

    Google Scholar 

  • Gaudichet, A., DeAngelis, M., Lefever, R., Petit, J. R., Korotkevitch, Y. S., and Petrov, V. N.: 1988, ‘Mineralogy of Insoluble Particles in the Vostok Antarctic Ice Core Over the Last Climate Cycle (150 kyr)’, Geophys. Res. Lett. 15, 1471–1474.

    Google Scholar 

  • Gibson, J. A. E., Garrick, R. C., Burton, H. R., and McTaggart, A. R.,: 1989, ‘Dimethylsulfide Concentrations in the Oceans Close to the Antarctic Continent’, Geomicrobiol. J. 6, 179–184.

    Google Scholar 

  • Goldman, J. C. and Carpenter, E. J.: 1974, ‘A Kinetic Approach to the Effect of Temperature on Algal Growth,’ Limnol. Oceanogr. 19, 756–766.

    Google Scholar 

  • Hill, F. B., Aneja, V. P., and Felder, R. M.: 1978, ‘A Technique for Measurement of Biogenic Sulfur Emission Fluxes,’ Environ. Sci. Health 13, 199–225.

    Google Scholar 

  • Hofmann, D. J.: 1991, ‘Aircraft Sulfur Emissions,’ Nature 349, 659.

    Google Scholar 

  • Idso, S. B.: 1989, Carbon Dioxide and Global Change: Earth in Transition, IBR Press, Tempe, AZ.

    Google Scholar 

  • Idso, S. B.: 1990, ‘A Role for Soil Microbes in Moderating the Carbon Dioxide Greenhouse Effect’, Soil Sci. 149, 179–180.

    Google Scholar 

  • Idso, S. B. and Kimball, B. A.: 1991, ‘Effects of Two and a Half Years of Atmospheric CO2 Enrichment on the Root Density Distribution of Three-Year-Old Sour Orange Trees’, Agric. For. Meteorol. 55, 345–349.

    Google Scholar 

  • Idso, S. B., Kimball, B. A., and Allen, S. G.: 1991a, ‘CO2 Enrichment of Sour Orange Trees: 2.5 Years into a Long-Term Experiment,’ Plant Cell Environ., 14, 351–353.

    Google Scholar 

  • Idso, S. B., Kimball, B. A., and Allen, S. G.: 1991b, ‘Net Photosynthesis of Sour Orange Trees Maintained in Atmospheres of Ambient and Elevated CO2 Concentration’, Agric. For. Meteorol. 54, 95–101.

    Google Scholar 

  • Kimball, B. A.: 1983, ‘Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis of 430 Prior Observations’, Agron. J. 75, 779–788.

    Google Scholar 

  • Legrand, M. R., Delmas, R. J., and Charlson, R. J.: 1988, ‘Climate Forcing Implications from Vostok Ice-Core Sulphate Data’, Nature 334, 418–420.

    Google Scholar 

  • Lovelock, J. E.: 1988, The Ages of Gaia: A Biography of Our Living Earth, Norton, New York.

    Google Scholar 

  • Lyle, M.: 1988, ‘Climatically Forced Organic Carbon Burial in Equatorial Atlantic and Pacific Oceans,’ Nature 335, 529–532.

    Google Scholar 

  • Lyle, M., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., and Brooksforce, K.: 1988, ‘The Record of Late Pleistocene Biogenic Sedimentation in the Eastern Tropical Pacific Ocean,’ Pale-Oceanogr. 3, 39–59.

    Google Scholar 

  • MacTaggart, D. L., Adams, D. F., and Farwell, S. O.: 1987, ‘Measurement of Biogenic Sulfur Emissions from Soils and Vegetation Using Dynamic Enclosure Methods: Total Sulfur Gas Emissions Via MFC/FD/FPD Determinations’, J. Atmos. Chem. 5, 417–437.

    Google Scholar 

  • Martin, J. H. and Fitzwater, S. E.: 1988, ‘Iron Deficiency Limits Phytoplanktonic Growth in the NorthEast Pacific Subarctic’, Nature 331, 341–343.

    Google Scholar 

  • Morris, R. J., McCartney, M. J., and Weaver, P. P. E.: 1984, ‘Sapropelic Deposits in a Sediment from the Guinea Basin, South Atlantic’, Nature 309, 611–614.

    Google Scholar 

  • Muller, P. J., Erlenkeuser, H., and von Grafenstein, R.: 1983, ‘Glacial-Interglacial Cycles in Oceanic Productivity Inferred from Organic Carbon Contents in Eastern North Atlantic Sediment Cores’, in Thiede, J. and Suess, E. (eds.), Coastal Upwelling: Its Sediment Record. Part B: Sedimentary Records of Ancient Coastal Upwelling, Plenum Press, New York, NY, pp. 365–389.

    Google Scholar 

  • Parkin, D. W. and Shackleton, N. J.: 1973, ‘Trade Wind and Temperature Correlations Down a DeepSea Core off the Sahara Coast’, Nature 245, 455–457.

    Google Scholar 

  • Pedersen, T. F.: 1983, ‘Increased Productivity in the Eastern Equatorial Pacific During The Last Glacial Maximum (19 000 to 14 000 yr B.P.)’, Geology 11, 16–19.

    Google Scholar 

  • Petit, J.-R., Briat, M., and Royer, A.: 1981, ‘Ice Age Aerosol Content from East Antarctic Ice Core Samples and Past Wind Strength’, Nature 293, 391–394.

    Google Scholar 

  • Rhea, G.-Y. and Gotham, I. J.: 1981, ‘The Effect of Environmental Factors on Phytoplankton Growth: Temperature and the Interactions of Temperature with Nutrient Limitation’, Limnol Oceanogr. 26, 635–648.

    Google Scholar 

  • Saigne, C. and Legrand, M.: 1987, ‘Measurement of Methanesulphonic Acid in Antarctic Ice’, Nature 330, 240–242.

    Google Scholar 

  • Sarnthein, M., Tetzlaff, G., Koopman, B., Walter, K., and Pflaumann, U.: 1981, ‘Glacial and Interglacial Wind Regimes Over the East Subtropical Atlantic and N.W. Africa’, Nature 293, 193–196.

    Google Scholar 

  • Staubes, R., Georgii, H.-W., and Ockelmann, G.: 1989, ‘Flux of COS, DMS and CS2 from Various Soils in Germany’, Tellus 41B, 305–313.

    Google Scholar 

  • Thompson, A. E., Esaias, W. E., and Iverson, R. L.: 1990, ‘Two Approaches to Determining the Seato-Air Flux of Dimethyl Sulfide: Satellite Ocean Color and a Photochemical Model with Atmospheric Measurements’, J. Geophys. Res. 95, 20551–20558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idso, S.B. The DMS-cloud albedo feedback effect: Greatly underestimated?. Climatic Change 21, 429–433 (1992). https://doi.org/10.1007/BF00141380

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00141380

Keywords

Navigation