Skip to main content
Log in

Recovery of a stream macroinvertebrate community from mine drainage disturbance

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Recovery of aquatic macroinvertebrates from the effects of mine drainage was documented using a ‘weight-of-evidence’ approach which included measures of physical, chemical, and biological data. Taxa richness; number of taxa in the orders Ephemeroptera, Plecoptera, and Trichoptera; and shredder taxa richness all increased downstream of the point source after water treatment was initiated. Cluster analysis of aquatic macroinvertebrate community data along with abundance of a metals sensitive mayfly (Rhithrogena hageni) also suggested recovery from metals effects. Response to decreased metal inputs was rapid and biological measurements of impacted sites attained levels comparable to upstream reference sites in two years. Our results suggest that aquatic communities impacted by metals, in the absence of degraded habitat and with nearby colonist pools, will recover quickly if low instream concentrations of toxicants are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. L., C. T. Walbridge & J. T. Fiandt, 1980. Survival and growth of Tanytarsus dissimilis (Chironomidae) exposed to copper, cadmium, zinc, and lead. Arch. envir. Contam. Toxicol. 9: 329–335.

    Google Scholar 

  • APHA, 1989. Standard methods for the analysis of water and wastewater. 17th edition.

  • Armitage, P., 1980. The effects of mine drainage and organic enrichment on benthos in the River Nent system, Northern Pennines. Hydrobiologia 74: 119–128.

    Google Scholar 

  • Barbour, M. T., J. L. Plafkin, B. P. Bradley, C. G. Graves & R. W. Wisseman, 1992. Evaluation of EPA's rapid bioassessment benthic metrics: metric redundancy and variability among reference stream sites. Envir. Toxicol. Chem. 11: 437–449.

    Google Scholar 

  • Cairns, J., Jr., J. S. Crossman, K. L. Dickson & E. E. Herricks, 1971. The recovery of damaged streams. Association of Southeastern Biol. Bull. 18: 79–106.

    Google Scholar 

  • Cairns, J., Jr. & E. P. Smith, 1994. The statistical validity of biomonitoring data. In S. L. Loeb & A. Spacie (eds), Biological monitoring of aquatic systems. Lewis Publishers, Boca Raton, Florida: 49–68.

    Google Scholar 

  • Chadwick, J. W. & S. P. Canton, 1984. Inadequacy of diversity indices in discerning metal mine drainage effects on a stream invertebrate community. Wat. Air Soil Pollut. 22: 217–223.

    Google Scholar 

  • Chadwick, J. W., S. P. Canton & R. L. Dent, 1986. Recovery of benthic invertebrate communities in Silver Bow Creek, Montana, following improved metal mine wastewater treatment. Wat. Air Soil Pollut. 28: 427–438.

    Google Scholar 

  • Chapman, P. M., E. A. Power, R. N. Dexter & H. B. Andersen, 1991. Evaluation of effects associated with an oil platform, using the sediment quality triad. Envir. Toxicol. Chem. 10: 407–424.

    Google Scholar 

  • Clements, W. H., 1994. Benthic invertebrate community responses to heavy metals in the upper Arkansas River basin, Colorado. J. n. am. benthol Soc 13: 30–44.

    Google Scholar 

  • Clements, W. H., D. S. Cherry & J. Cairns, Jr., 1988. Structural alterations in aquatic insect communities exposed to copper in laboratory streams. Envir. Toxicol. Chem. 7: 715–722.

    Google Scholar 

  • Clements, W. H., D. S. Cherry & J. Cairns, Jr., 1989. The influence of copper exposure on predator-prey interactions in aquatic insect communities. Freshwat. Biol. 21: 483–488.

    Google Scholar 

  • Clements, W. H. & P. M. Kiffney, 1995, The influence of elevation on benthic community responses to heavy metals in Rocky Mountain streams. Can. J. Fish aquat. Sci 52: 1966–1977.

    Google Scholar 

  • Diamond, J. M., W. Bower & D. Gruber, 1993. Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River. Envir. Mgmt 17: 225–238.

    Google Scholar 

  • Eagleson, K. W., D. L. Lenat, L. W. Ausley & F. B. Winborne, 1990. Comparison of measured instream biological responses with responses predicted using the Ceriodaphnia dubia chronic toxicity test. Envir. Toxicol. Chem. 9: 1019–1028.

    Google Scholar 

  • EPA, 1983. Methods of chemical analysis of water and wastes. EPA600/4–79–020, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio.

    Google Scholar 

  • Gauch, H. G., Jr., 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hall, R. J. & F. P. Ide, 1987. Evidence of acidification effects on stream insect communities in central Ontario between 1937 and 1985. Can. J. Fish. aquat. Sci. 44: 1652–1657.

    Google Scholar 

  • Hatakeyama, S., 1989. Effect of copper and zinc on the growth and emergence of Epeorus latifolium (Ephemeroptera) in an indoor model stream. Hydrobiologia 174: 17–27.

    Google Scholar 

  • Hildrew, A. G., C. R. Townsend & J. Francis, 1984. Community structure in some southern English streams: the influence of species interactions. Freshwat. Biol. 14: 297–310.

    Google Scholar 

  • Hoiland, W. K. & F. W. Rabe, 1992. Effects of increasing zinc levels and habitat degradation on macroinvertebrate communities in three north Idaho streams. J. Freshwat. Ecol. 7: 373–380.

    Google Scholar 

  • Hoiland, W. K., F. W. Rabe & R. C. Biggam, 1994. Recovery of macroinvertebrate communities from metal pollution in the South Fork and mainstem of the Coeur d'Alene River, Idaho. Water Envir. Res. 66: 84–88.

    Google Scholar 

  • Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.

    Google Scholar 

  • James, F. C. & C. E. McCulloch, 1990. Multivariate analysis in ecology and systematics: panacea or Pandora's box? Annu. Rev. Ecol. Syst. 21: 129–166.

    Google Scholar 

  • Kiffney, P. M. & W. H. Clements, 1994. Effects of heavy metals on a macroinvertebrate assemblage from a Rocky Mountain stream in experimental microcosms. J. n. am. benthol. Soc. 13: 511–523.

    Google Scholar 

  • Kimball, B. A., 1991. Physical, chemical and biological processes in waters affected by acid mine drainage: from headwater streams to downstream reservoirs. In G. E. Mallard & D. A. Aronson (eds), U.S. Geological Survey Toxic Substances Hydrology Program-Proceedings of the Technical Meeting, Monterey, California, March 11–15, 1991: U.S. Geological Survey Water-Resources Investigatione Report 91–4034. Washington, D.C.: U.S. Government Printing Office, 365–370.

    Google Scholar 

  • Kimmel, W. G., D. J. Murphey, W. E. Sharpe & D. R. DeWalle, 1985. Macroinvertebrate community structure and detritus processing rates in two southwestern Pennsylvania streams acidified by atmospheric deposition. Hydrobiologia 124: 97–102.

    Google Scholar 

  • Koryak, M., M. A. Shapiro & J. L. Sykora, 1972. Riffle zoobenthos in streams receiving acid mine drainage. Wat. Res. 6: 1239–1247.

    Google Scholar 

  • LaPoint, T. W., S. M. Melancon & M. K. Morris, 1984. Relationships among observed metal concentrations, criteria, and benthic community structural responses. J. WPCF 56: 1030–1038.

    Google Scholar 

  • Laurie, R. D. & J. R. E. Jones, 1938. The faunistic recovery of a lead-polluted river in North Cardiganshire, Wales. J. anim. Ecol. 7: 272–289.

    Google Scholar 

  • Leland, H. V., S. V. Fend, T. L. Dudley & J. L. Carter, 1989. Effects of copper on species composition of benthic insects in a Sierra Nevada, California, stream. Freshwat. Biol. 21: 163–179.

    Google Scholar 

  • McLean, R. O. & A. K. Jones, 1975. Studies of tolerance to heavy metals in the flora of the rivers Ystwyth and Clarach, Wales. Freshwat. Biol. 5: 431–444.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins (eds), 1984. An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, Iowa.

    Google Scholar 

  • Munro, B. H., 1993. Correlation. In Statistical Methods for Health Care Research. 2nd edn., B. H. Munro & E. B. Page (eds), J. B. Lippincott Co., Philadelphia: 173–192.

    Google Scholar 

  • Nelson, S. M. & R. A. Roline, 1993. Selection of the mayfly Rithrogena hageni as an indicator of metal pollution in the upper Arkansas River. J. Freshwat. Ecol. 8: 111–119.

    Google Scholar 

  • Nelson, S. M., R. A. Roline & A. M. Montano, 1993. Use of hyporheic samplers in assessing mine drainage impacts. J. Freshwat. Ecol. 8: 103–110.

    Google Scholar 

  • Nemec, A. F. L. & R. O. Brinkhurst, 1988. Using the bootstrap to assess statistical significance in the cluster analysis of species abundance data. Can. J. Fish. aquat. Sci. 45: 965–970.

    Google Scholar 

  • Norris, R. H., 1986. Mine waste pollution of the Molonglo River, New South Wales and the Australian Capital Territory: effectiveness of remedial works at Captains Flat Mining Area. Aust. J. mar. Freshwat. Res. 37: 147–157.

    Google Scholar 

  • Peckarsky, B. L. & K. Z. Cook, 1981. Effects of keystone mine effluent on colonization of stream benthos. Envir. Ent. 10: 864–871.

    Google Scholar 

  • Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. Office of Water, United States Environmental Protection Agency, Washington, DC, USA. EPA/444/4–89–001.

    Google Scholar 

  • Resh, V. H. & J. K. Jackson, 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. D. M. Rosenberg & V. H. Resh (eds), Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, London: 195–233.

    Google Scholar 

  • Roline, R. A., 1988. The effects of heavy metal pollution of the upper Arkansas River on the distribution of aquatic macroinvertebrates. Hydrobiologia 160: 3–8.

    Google Scholar 

  • Schulman, R. S., 1992. Statistics in plain English. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Ugland, R. C., B. J. Cochran, J. L. Ebling & R. D. Steger, 1989. Water resources data for Colorado, water year 1988, volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin. Water Resources Division, United States Geological Survey, Lakewood, Colorado, USA. USGS-WDR-CO-88–1.

    Google Scholar 

  • Ugland, R. C., B. J. Cochran, J. L. Ebling & R. D. Steger, 1990. Water resources data for Colorado, water year 1989, volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin. Water Resources Division, United States Geological Survey, Lakewood, Colorado, USA. USGS-WDR-CO-89–1.

    Google Scholar 

  • Ugland, R. C., B. J. Cochran, M. M. Hiner & R. D. Steger, 1991. Water resources data for Colorado, water year 1991, volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin. Water Resources Division, United States Geological Survey, Lakewood, Colorado, USA. USGS-WDR-CO-90–1.

    Google Scholar 

  • Ugland, R. C., B. J. Cochran, M. M. Hiner & R. D. Steger, 1992. Water resources data for Colorado, water year 1992, volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin. Water Resources Division, United States Geological Survey, Lakewood, Colorado, USA. USGS-WDR-CO-91–1.

    Google Scholar 

  • Ugland, R. C., B. J. Cochran, M. M. Hiner & R. D. Steger, 1993. Water resources data for Colorado, water year 1993, volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin. Water Resources Division, United States Geological Survey, Lakewood, Colorado, USA. USGS-WDR-CO-92–1.

    Google Scholar 

  • Ugland, R. C., B. J. Cochran, M. M. Hiner & R. D. Steger, 1994. Water resources data for Colorado, water year 1993, volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin. Water Resources Division, United States Geological Survey, Lakewood, Colorado, USA. USGS-WDR-CO-93–1.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Google Scholar 

  • Wallace, J. B., 1990. Recovery of lotic macroinvertebrate communities from disturbance. Envir. Mgmt 14: 605–620.

    Google Scholar 

  • Ward, J. V., 1986. Altitudinal zonation in a Rocky Mountain stream. Arch. Hydrobiol. Suppl. 74: 133–199.

    Google Scholar 

  • Warnick, S. L. & H. L. Bell, 1969. The acute toxicity of some heavy metals to different species of aquatic insects. J. WPCF 41 part 1: 280–284.

    Google Scholar 

  • Wetherbee, G. A., B. A. Kimball & W. S. Maura, 1991. Selected hydrologic data for the upper Arkansas River basin, Colorado, 1986–89. U.S. Geological Survey. Open-File Report 91–528.

  • Williams, D. D. & N. E. Williams, 1993. The upstream/downstream movement paradox of lotic invertebrates: quantitative evidence from a Welsh mountain stream. Freshwat. Biol. 30: 199–218.

    Google Scholar 

  • Yount, J. D. & G. J. Niemi, 1990. Recovery of lotic communities and ecosystems from disturbance — a narrative review of case studies. Envir. Mgmt 14: 547–569.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical analysis, second edition. PrenticeHall, Inc., New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, S.M., Roline, R.A. Recovery of a stream macroinvertebrate community from mine drainage disturbance. Hydrobiologia 339, 73–84 (1996). https://doi.org/10.1007/BF00008915

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008915

Key words

Navigation