Skip to main content
Log in

Hypoxia and Resistance Exercise: A Comparison of Localized and Systemic Methods

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

It is generally believed that optimal hypertrophic and strength gains are induced through moderate- or high-intensity resistance training, equivalent to at least 60 % of an individual’s 1-repetition maximum (1RM). However, recent evidence suggests that similar adaptations are facilitated when low-intensity resistance exercise (~20–50 % 1RM) is combined with blood flow restriction (BFR) to the working muscles. Although the mechanisms underpinning these responses are not yet firmly established, it appears that localized hypoxia created by BFR may provide an anabolic stimulus by enhancing the metabolic and endocrine response, and increase cellular swelling and signalling function following resistance exercise. Moreover, BFR has also been demonstrated to increase type II muscle fibre recruitment during exercise. However, inappropriate implementation of BFR can result in detrimental effects, including petechial haemorrhage and dizziness. Furthermore, as BFR is limited to the limbs, the muscles of the trunk are unable to be trained under localized hypoxia. More recently, the use of systemic hypoxia via hypoxic chambers and devices has been investigated as a novel way to stimulate similar physiological responses to resistance training as BFR techniques. While little evidence is available, reports indicate that beneficial adaptations, similar to those induced by BFR, are possible using these methods. The use of systemic hypoxia allows large groups to train concurrently within a hypoxic chamber using multi-joint exercises. However, further scientific research is required to fully understand the mechanisms that cause augmented muscular changes during resistance exercise with a localized or systemic hypoxic stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kraemer WJ, Fleck SJ, Evans WJ. Strength and power training: physiological mechanisms of adaptation. Exerc Sport Sci Rev. 1996;24:363–97.

    CAS  PubMed  Google Scholar 

  2. Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2005;35(10):841–51.

    Article  PubMed  Google Scholar 

  3. Spiering BA, Kraemer WJ, Anderson JM, et al. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med. 2008;38(7):527–40.

    Article  PubMed  Google Scholar 

  4. Gordon SE, Kraemer WJ, Vos NH, et al. Effect of acid–base balance on the growth hormone response to acute high-intensity cycle exercise. J Appl Physiol. 1994;76(2):821–9.

    CAS  PubMed  Google Scholar 

  5. Goto K, Ishii N, Kizuka T, et al. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc. 2005;37(6):955–63.

    CAS  PubMed  Google Scholar 

  6. Hakkinen K, Pakarinen A, Alen M, et al. Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol. 1988;65(6):2406–12.

    CAS  PubMed  Google Scholar 

  7. Viru M, Jansson E, Viru A, et al. Effect of restricted blood flow on exercise-induced hormone changes in healthy men. Eur J Appl Physiol Occup Physiol. 1998;77(6):517–22.

    Article  CAS  PubMed  Google Scholar 

  8. Takarada Y, Nakamura Y, Aruga S, et al. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol. 2000;88(1):61–5.

    CAS  PubMed  Google Scholar 

  9. Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev. 1996;17(5):481–517.

    CAS  PubMed  Google Scholar 

  10. McCall GE, Byrnes WC, Fleck SJ, et al. Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol. 1999;24(1):96–107.

    Article  CAS  PubMed  Google Scholar 

  11. Crewther B, Keogh J, Cronin J, et al. Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Med. 2006;36(3):215–38.

    Article  PubMed  Google Scholar 

  12. Loenneke JP, Fahs CA, Rossow LM, et al. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses. 2012;78(1):151–4.

    Article  CAS  PubMed  Google Scholar 

  13. Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):2097–106.

    CAS  PubMed  Google Scholar 

  14. Shinohara M, Kouzaki M, Yoshihisa T, et al. Efficacy of tourniquet ischemia for strength training with low resistance. Eur J Appl Physiol Occup Physiol. 1998;77(1–2):189–91.

    CAS  PubMed  Google Scholar 

  15. Kon M, Ikeda T, Homma T, et al. Effects of acute hypoxia on metabolic and hormonal responses to resistance exercise. Med Sci Sports Exerc. 2010;42(7):1279–785.

    CAS  PubMed  Google Scholar 

  16. Kon M, Ikeda T, Homma T, et al. Effects of low-intensity resistance exercise under acute systemic hypoxia on hormonal responses. J Strength Cond Res. 2012;26(3):611–7.

    PubMed  Google Scholar 

  17. Nishimura A, Sugita M, Kato K, et al. Hypoxia increases muscle hypertrophy induced by resistance training. Int J Sports Physiol Perform. 2010;5(4):497–508.

    PubMed  Google Scholar 

  18. Takano H, Morita T, Iida H, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol. 2005;95(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  19. Loenneke JP, Kearney ML, Thrower AD, et al. The acute response of practical occlusion in the knee extensors. J Strength Cond Res. 2010;24(10):2831–4.

    Article  PubMed  Google Scholar 

  20. Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength Cond J. 2009;31(3):77–84.

    Article  Google Scholar 

  21. Sumide T, Sakuraba K, Sawaki K, et al. Effect of resistance exercise training combined with relatively low vascular occlusion. J Sci Med Sport. 2009;12(1):107–12.

    Article  PubMed  Google Scholar 

  22. Nakajima T, Morita T, Sato Y. Key considerations when conducting KAATSU training. Int J KAATSU Training Res. 2011;7(1):1–6.

    Article  Google Scholar 

  23. ACSM. American College of Sports Medicine position stand: progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  24. Abe T, Yasuda T, Midorikawa T, et al. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily KAATSU resistance training. Int J KAATSU Training Res. 2005;1(1):6–12.

    Article  Google Scholar 

  25. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14.

    Article  PubMed  Google Scholar 

  26. Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004;54(6):585–92.

    Article  PubMed  Google Scholar 

  27. Madarame H, Neya M, Ochi E, et al. Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc. 2008;40(2):258–63.

    Article  PubMed  Google Scholar 

  28. Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports. 2011;21(6):e231–41.

    Article  CAS  PubMed  Google Scholar 

  29. Manimmanakorn A, Hamlin MJ, Ross JJ, et al. Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport. 2013;16(4):337–42.

    Article  PubMed  Google Scholar 

  30. Abe T, Kawamoto K, Yasuda T, et al. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J KAATSU Training Res. 2005;1(1):19–23.

    Article  Google Scholar 

  31. Yamanaka T, Farley RS, Caputo JL. Occlusion training increases muscular strength in division IA football players. J Strength Cond Res. 2012;26(9):2523–9.

    Article  PubMed  Google Scholar 

  32. Cook CJ, Kilduff LP, Beaven CM. Three weeks of occlusion training can improve strength and power in trained athletes. Int J Sports Physiol Perform. 2014;9(1):166–72.

    Article  PubMed  Google Scholar 

  33. Schantz P, Randall-Fox E, Hutchison W, et al. Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand. 1983;117(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  34. Yasuda T, Fujita T, Miyagi Y, et al. Electromyographic responses of arm and chest muscle during bench press exercise with and without KAATSU. Int J KAATSU Training Res. 2006;2(1):15–8.

    Article  Google Scholar 

  35. Yasuda T, Brechue WF, Fujita T, et al. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27(5):479–89.

    Article  PubMed  Google Scholar 

  36. Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406.

    PubMed  Google Scholar 

  37. Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 2006;36(2):133–49.

    Article  PubMed  Google Scholar 

  38. Behm DG. Neuromuscular implications and applications of resistance training. J Strength Cond Res. 1995;9(4):264–74.

    Google Scholar 

  39. Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc. 2013;45(1):67–74.

    Article  PubMed  Google Scholar 

  40. Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exerc Sport Sci Rev. 2009;37(2):78–85.

    Article  PubMed  Google Scholar 

  41. Wernbom M, Jarrebring R, Andreasson MA, et al. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J Strength Cond Res. 2009;23(8):2389–95.

    Article  PubMed  Google Scholar 

  42. Wernbom M, Augustsson J, Thomee R. Effects of vascular occlusion on muscular endurance in dynamic knee extension exercise at different submaximal loads. J Strength Cond Res. 2006;20(2):372–7.

    PubMed  Google Scholar 

  43. Loenneke JP, Balapur A, Thrower AD, et al. The perceptual responses to occluded exercise. Int J Sports Med. 2011;32(3):181–4.

    Article  CAS  PubMed  Google Scholar 

  44. Graham B, Breault MJ, McEwen JA, et al. Occlusion of arterial flow in the extremities at subsystolic pressures through the use of wide tourniquet cuffs. Clin Orthop Relat Res. 1993;286:257–61.

    PubMed  Google Scholar 

  45. Crenshaw AG, Hargens AR, Gershuni DH, et al. Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop Scand. 1988;59(4):447–51.

    Article  CAS  PubMed  Google Scholar 

  46. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.

    Article  PubMed  Google Scholar 

  47. Suga T, Okita K, Takada S, et al. Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol. 2012;112(11):3915–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119–24.

    Article  CAS  PubMed  Google Scholar 

  49. Takada S, Okita K, Suga T, et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol. 2012;113(2):199–205.

    Article  CAS  PubMed  Google Scholar 

  50. Reeves GV, Kraemer RR, Hollander DB, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol. 2006;101(6):1616–22.

    Article  CAS  PubMed  Google Scholar 

  51. Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903–10.

    Article  CAS  PubMed  Google Scholar 

  52. Pierce JR, Clark BC, Ploutz-Snyder LL, et al. Growth hormone and muscle function responses to skeletal muscle ischemia. J Appl Physiol. 2006;101(6):1588–95.

    Article  CAS  PubMed  Google Scholar 

  53. Kawada S. What phenomena do occur in blood flow-restricted muscle? Int J KAATSU Training Res. 2005;1(2):37–44.

    Article  Google Scholar 

  54. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72.

    Article  PubMed  Google Scholar 

  55. Patterson SD, Leggate M, Nimmo MA, et al. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. 2013;113(3):713–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kraemer RR, Kilgore JL, Kraemer GR, et al. Growth hormone, IGF-I, and testosterone responses to resistive exercise. Med Sci Sports Exerc. 1992;24(12):1346–52.

    Article  CAS  PubMed  Google Scholar 

  57. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61.

    Article  PubMed  Google Scholar 

  58. Le Roith D, Bondy C, Yakar S, et al. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22(1):53–74.

    Article  PubMed  Google Scholar 

  59. Borst SE, De Hoyos DV, Garzarella L, et al. Effects of resistance training on insulin-like growth factor-1 and IGF binding proteins. Med Sci Sports Exerc. 2001;33(4):648–53.

    Article  CAS  PubMed  Google Scholar 

  60. Marx JO, Ratamess NA, Nindl BC, et al. Low-volume circuit versus high-volume periodized resistance training in women. Med Sci Sports Exerc. 2001;33(4):635–43.

    Article  CAS  PubMed  Google Scholar 

  61. Chandler RM, Byrne HK, Patterson JG, et al. Dietary supplements affect the anabolic hormones after weight-training exercise. J Appl Physiol. 1994;76(2):839–45.

    CAS  PubMed  Google Scholar 

  62. Kraemer WJ, Marchitelli L, Gordon SE, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol. 1990;69(4):1442–50.

    CAS  PubMed  Google Scholar 

  63. Durand RJ, Castracane VD, Hollander DB, et al. Hormonal responses from concentric and eccentric muscle contractions. Med Sci Sports Exerc. 2003;35(6):937–43.

    Article  CAS  PubMed  Google Scholar 

  64. Pope ZK, Willardson JM, Schoenfeld BJ. Exercise and blood flow restriction. J Strength Cond Res. 2013;27(10):2914–26.

    Article  PubMed  Google Scholar 

  65. Kraemer WJ. Neuroendocrine responses to resistance exercise. In: Baechle TR, editor. Essentials of straining training and conditioning. Champaign: Human Kinetics; 2000. p. 91–114.

    Google Scholar 

  66. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19(6):717–97.

    CAS  PubMed  Google Scholar 

  67. Weltman A, Pritzlaff CJ, Wideman L, et al. Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow. J Appl Physiol. 2000;89(2):629–35.

    CAS  PubMed  Google Scholar 

  68. Godfrey RJ, Madgwick Z, Whyte GP. The exercise-induced growth hormone response in athletes. Sports Med. 2003;33(8):599–613.

    Article  PubMed  Google Scholar 

  69. Smilios I, Pilianidis T, Karamouzis M, et al. Hormonal responses after various resistance exercise protocols. Med Sci Sports Exerc. 2003;35(4):644–54.

    Article  CAS  PubMed  Google Scholar 

  70. Kraemer WJ, Fleck SJ, Callister R, et al. Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Med Sci Sports Exerc. 1989;21(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  71. West DW, Phillips SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sportsmed. 2010;38(3):97–104.

    Article  PubMed  Google Scholar 

  72. West DW, Burd NA, Staples AW, et al. Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process. Int J Biochem Cell Biol. 2010;42(9):1371–5.

    Article  CAS  PubMed  Google Scholar 

  73. Nielsen JL, Aagaard P, Bech RD, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol. 2012;590(Pt 17):4351–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Hornberger TA, Stuppard R, Conley KE, et al. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J. 2004;380(Pt 3):795–804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 2006;21:362–9.

    Article  CAS  Google Scholar 

  76. Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9.

    Article  CAS  PubMed  Google Scholar 

  77. Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol. 2010;108(5):1199–209.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Wernbom M, Apro W, Paulsen G, et al. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol. 2013;113(12):2953–65.

    Article  CAS  PubMed  Google Scholar 

  79. Wernbom M, Augustsson J, Raastad T. Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand J Med Sci Sports. 2008;18(4):401–16.

    Article  CAS  PubMed  Google Scholar 

  80. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005–28.

    CAS  PubMed  Google Scholar 

  81. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki YJ, Ford GD. Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol. 1999;31(2):345–53.

    Article  CAS  PubMed  Google Scholar 

  83. Tamaki T, Uchiyama S, Tamura T, et al. Changes in muscle oxygenation during weight-lifting exercise. Eur J Appl Physiol. 1994;68(6):465–9.

    Article  CAS  Google Scholar 

  84. Korthuis RJ, Granger DN, Townsley MI, et al. The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res. 1985;57(4):599–609.

    Article  CAS  PubMed  Google Scholar 

  85. Goldfarb AH, Garten RS, Chee PD, et al. Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur J Appl Physiol. 2008;104(5):813–9.

    Article  CAS  PubMed  Google Scholar 

  86. Roth SM, Walsh S. Myostatin: a therapeutic target for skeletal muscle wasting. Curr Opin Clin Nutr Metab Care. 2004;7(3):259–63.

    Article  CAS  PubMed  Google Scholar 

  87. Roth SM, Martel GF, Ferrell RE, et al. Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med (Maywood). 2003;228(6):706–9.

    CAS  Google Scholar 

  88. Kim JS, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab. 2005;288(6):E1110–9.

    Article  CAS  PubMed  Google Scholar 

  89. Hulmi JJ, Ahtiainen JP, Kaasalainen T, et al. Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Med Sci Sports Exerc. 2007;39(2):289–97.

    Article  CAS  PubMed  Google Scholar 

  90. Petrella JK, Kim JS, Cross JM, et al. Efficacy of myonuclear addition may explain differential myofiber growth among resistance-trained young and older men and women. Am J Physiol Endocrinol Metab. 2006;291(5):E937–46.

    Article  CAS  PubMed  Google Scholar 

  91. Walker KS, Kambadur R, Sharma M, et al. Resistance training alters plasma myostatin but not IGF-1 in healthy men. Med Sci Sports Exerc. 2004;36(5):787–93.

    Article  CAS  PubMed  Google Scholar 

  92. Drummond MJ, Fujita S, Abe T, et al. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc. 2008;40(4):691–8.

    Article  CAS  PubMed  Google Scholar 

  93. Laurentino GC, Ugrinowitsch C, Roschel H, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406–12.

    Article  CAS  PubMed  Google Scholar 

  94. Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. 2005;37(7):1144–450.

    Article  PubMed  Google Scholar 

  95. Manini TM, Vincent KR, Leeuwenburgh CL, et al. Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol (Oxf). 2011;201(2):255–63.

    Article  CAS  Google Scholar 

  96. Abe T, Loenneke JP, Fahs CA, et al. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging. 2012;32(4):247–52.

    Article  CAS  PubMed  Google Scholar 

  97. Fujita T, Brechue W, Kurita K, et al. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int J KAATSU Training Res. 2008;4(1):1–8.

    Article  Google Scholar 

  98. Sjogaard G, Adams RP, Saltin B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol Regul Integr Comp Physiol. 1985;248(2 Pt 2):R190–6.

    CAS  Google Scholar 

  99. Lang F, Busch GL, Ritter M, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78(1):247–306.

    CAS  PubMed  Google Scholar 

  100. Dangott B, Schultz E, Mozdziak PE. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. Int J Sports Med. 2000;21(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  101. Lang F. Mechanisms and significance of cell volume regulation. J Am Coll Nutr. 2007;26(Suppl 5):613S–23S.

    Article  CAS  PubMed  Google Scholar 

  102. Gundermann DM, Fry CS, Dickinson JM, et al. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol. 2012;112(9):1520–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Moritani T, Sherman WM, Shibata M, et al. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol. 1992;64(6):552–6.

    Article  CAS  PubMed  Google Scholar 

  104. Sundberg CJ. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand Suppl. 1994;615:1–50.

    CAS  PubMed  Google Scholar 

  105. Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol. 1965;28:560–80.

    CAS  PubMed  Google Scholar 

  106. Loenneke JP, Fahs CA, Wilson JM, et al. Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses. 2011;77(5):748–52.

    Article  CAS  PubMed  Google Scholar 

  107. Yasuda T, Abe T, Brechue WF, et al. Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism. 2010;59(10):1510–9.

    Article  CAS  PubMed  Google Scholar 

  108. Rotto DM, Kaufman MP. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol. 1988;64(6):2306–13.

    CAS  PubMed  Google Scholar 

  109. Leonard CT, Kane J, Perdaems J, et al. Neural modulation of muscle contractile properties during fatigue: afferent feedback dependence. Electroencephalogr Clin Neurophysiol. 1994;93(3):209–17.

    Article  CAS  PubMed  Google Scholar 

  110. Abe T. Effects of short-term low-intensity KAATSU training on strength and skeletal muscle size in young men [in Japanese with English abstract]. J Train Sci Exerc Sports. 2004;16:199–207.

    Google Scholar 

  111. Yasuda T, Fujita S, Ogasawara R, et al. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging. 2010;30(5):338–43.

    PubMed  Google Scholar 

  112. Yasuda T, Ogasawara R, Sakamaki M, et al. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training. Clin Physiol Funct Imaging. 2011;31(5):347–51.

    Article  PubMed  Google Scholar 

  113. Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol. 2001;84(4):283–90.

    Article  CAS  PubMed  Google Scholar 

  114. Bonetti DL, Hopkins WG, Kilding AE. High-intensity kayak performance after adaptation to intermittent hypoxia. Int J Sports Physiol Perform. 2006;1(3):246–60.

    PubMed  Google Scholar 

  115. Vogt M, Puntschart A, Geiser J, et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.

    CAS  PubMed  Google Scholar 

  116. Roels B, Thomas C, Bentley DJ, et al. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. J Appl Physiol. 2007;102(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  117. Lundby C, Calbet JA, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci. 2009;66(22):3615–23.

    Article  CAS  PubMed  Google Scholar 

  118. Millet GP, Roels B, Schmitt L, et al. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25.

    Article  PubMed  Google Scholar 

  119. Pesta D, Hoppel F, Macek C, et al. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R1078–87.

    Article  CAS  PubMed  Google Scholar 

  120. Friedmann B, Kinscherf R, Borisch S, et al. Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expression. Pflügers Arch Eur J Physiol. 2003;446(6):742–51.

    Article  CAS  Google Scholar 

  121. Manimmanakorn A, Manimmanakorn N, Taylor R, et al. Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol. 2013;113(7):1767–74.

    Article  PubMed  Google Scholar 

  122. Issberner U, Reeh PW, Steen KH. Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett. 1996;208(3):191–4.

    Article  CAS  PubMed  Google Scholar 

  123. Favier FB, Costes F, Defour A, et al. Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1659–66.

    Article  CAS  PubMed  Google Scholar 

  124. Hayot M, Rodriguez J, Vernus B, et al. Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol Cell Endocrinol. 2011;332(1–2):38–47.

    Article  CAS  PubMed  Google Scholar 

  125. MacDougall JD, Green HJ, Sutton JR, et al. Operation Everest II: structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand. 1991;142(3):421–7.

    Article  CAS  PubMed  Google Scholar 

  126. Etheridge T, Atherton PJ, Wilkinson D, et al. Effects of hypoxia on muscle protein synthesis and anabolic signaling at rest and in response to acute resistance exercise. Am J Physiol Endocrinol Metab. 2011;301(4):697–702.

    Article  CAS  Google Scholar 

  127. Mason S, Johnson RS. The role of HIF-1 in hypoxic response in the skeletal muscle. Adv Exp Med Biol. 2007;618:229–44.

    Article  PubMed  Google Scholar 

  128. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24:97–106.

    Article  CAS  Google Scholar 

  129. Loenneke JP, Young KC, Fahs CA, et al. Blood flow restriction: rationale for improving bone. Med Hypotheses. 2012;78(4):523–7.

    Article  PubMed  Google Scholar 

  130. Arsic N, Zacchigna S, Zentilin L, et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10(5):844–54.

    Article  CAS  PubMed  Google Scholar 

  131. Faiss R, Pialoux V, Sartori C, et al. Ventilation, oxidative stress, and nitric oxide in hypobaric versus normobaric hypoxia. Med Sci Sports Exerc. 2013;45(2):253–60.

    Article  CAS  PubMed  Google Scholar 

  132. Anderson JE. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell. 2000;11(5):1859–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009;10(6):507–15.

    Article  CAS  PubMed  Google Scholar 

  134. Sandri M. Autophagy in skeletal muscle. FEBS Lett. 2010;584(7):1411–6.

    Article  CAS  PubMed  Google Scholar 

  135. Schiaffino S, Dyar KA, Ciciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4294–314.

    Article  CAS  PubMed  Google Scholar 

  136. Bigard X. Molecular factors involved in the control of muscle mass during hypoxia-exposure: the main hypotheses are revisited. Acta Physiol (Oxf). 2013;208(3):222–3.

    Article  CAS  Google Scholar 

  137. Melissa L, MacDougall JD, Tarnopolsky MA, et al. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions. Med Sci Sports Exerc. 1997;29(2):238–43.

    Article  CAS  PubMed  Google Scholar 

  138. Aravindan N, Williams MT, Riedel BJ, et al. Transcriptional responses of rat skeletal muscle following hypoxia-reoxygenation and near ischaemia-reperfusion. Acta Physiol Scand. 2005;183(4):367–77.

    Article  CAS  PubMed  Google Scholar 

  139. Casey DP, Joyner MJ. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J Physiol. 2012;590(24):6321–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47(Suppl 1):i45–50.

    Article  PubMed Central  PubMed  Google Scholar 

  141. McDonough P, Behnke BJ, Padilla DJ, et al. Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol. 2005;563(Pt 3):903–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Cleland SM, Murias JM, Kowalchuk JM, et al. Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise. Appl Physiol Nutr Metab. 2012;37(1):138–48.

    Article  CAS  PubMed  Google Scholar 

  143. Downing SE, Mitchell JH, Wallace AG. Cardiovascular responses to ischemia, hypoxia, and hypercapnia of the central nervous system. Am J Physiol Leg Cont. 1963;204(5):881–7.

    Google Scholar 

Download references

Acknowledgments

This review was not funded by any outside organization. There are no conflicts of interest present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan R. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, B.R., Slattery, K.M., Sculley, D.V. et al. Hypoxia and Resistance Exercise: A Comparison of Localized and Systemic Methods. Sports Med 44, 1037–1054 (2014). https://doi.org/10.1007/s40279-014-0177-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0177-7

Keywords

Navigation