Skip to main content
Log in

Neuroprotection in Multiple Sclerosis: A Therapeutic Approach

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is pathologically characterized by inflammatory demyelination and neurodegeneration. Axonal damage, along with neuronal loss, occurs from disease onset and may lead to progressive and permanent disability. In contrast with the inflammatory pathways, the molecular mechanisms leading to MS neurodegeneration remain largely elusive. With improved understanding of these mechanisms, new potential therapeutic targets for neuroprotection have emerged. We review the current understanding of neurodegenerative processes at play in MS and discuss potential outcome measures and targets for neuroprotection trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris MK, Maghzi AH, Etemadifar M, Kelley RE, Gonzalez-Toledo E, Minagar A. Acute demyelinating disorders of the central nervous system. Curr Treat Options Neurol. 2009;11(1):55–63.

    PubMed  Google Scholar 

  2. Tselis A, Khan OA, Lisak RP. Approaches to neuroprotective strategies in multiple sclerosis. Expert Opin Pharmacother. 2010;11(17):2869–78. doi:10.1517/14656566.2010.508070.

    PubMed  Google Scholar 

  3. Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. 2000;48(6):893–901.

    PubMed  CAS  Google Scholar 

  4. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Review Neurosci. 2008;31:247–69. doi:10.1146/annurev.neuro.30.051606.094313.

    CAS  Google Scholar 

  5. Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain. 2003;126(Pt 2):433–7.

    PubMed  CAS  Google Scholar 

  6. Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64(3):247–54. doi:10.1002/ana.21423.

    PubMed  Google Scholar 

  7. Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol. 2008;64(3):255–65. doi:10.1002/ana.21436.

    PubMed  Google Scholar 

  8. Henderson AP, Barnett MH, Parratt JD, Prineas JW. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol. 2009;66(6):739–53. doi:10.1002/ana.21800.

    PubMed  Google Scholar 

  9. Murta V, Ferrari CC. Influence of peripheral inflammation on the progression of multiple sclerosis: evidence from the clinic and experimental animal models. Mol Cell Neurosci. 2013;53:6–13. doi:10.1016/j.mcn.2012.06.004.

    PubMed  CAS  Google Scholar 

  10. Henry RG, Shieh M, Amirbekian B, Chung S, Okuda DT, Pelletier D. Connecting white matter injury and thalamic atrophy in clinically isolated syndromes. J Neurol Sci. 2009;282(1–2):61–6. doi:10.1016/j.jns.2009.02.379.

    PubMed  Google Scholar 

  11. Ruiz-Pena JL, Pinero P, Sellers G, Argente J, Casado A, Foronda J, et al. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy. BMC Neurol. 2004;4:8. doi:10.1186/1471-2377-4-8.

    PubMed  Google Scholar 

  12. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10(5):411–18. doi: 10.1016/j.mito.2010.05.014.

  13. Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N. Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain. 2008;131(Pt 1):288–303. doi:10.1093/brain/awm291.

    PubMed  Google Scholar 

  14. Shirani A, Zhao Y, Karim ME, Evans C, Kingwell E, van der Kop ML, et al. Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2012;308(3):247–56. doi:10.1001/jama.2012.7625.

    PubMed  CAS  Google Scholar 

  15. Lisak RP. Neurodegeneration in multiple sclerosis: defining the problem. Neurology. 2007;68(22 Suppl 3):S5–12 (discussion S43–54).

    Google Scholar 

  16. Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011;93(1):1–12. doi:10.1016/j.pneurobio.2010.09.005.Epub2010Oct12.

    PubMed  Google Scholar 

  17. Franklin RJ, ffrench-Constant C, Edgar JM, Smith KJ. Neuroprotection and repair in multiple sclerosis. Nat Rev Neurol. 2012;8(11):624-34. doi: 10.1038/nrneurol.2012.200. (Epub 2012 Oct 2).

    Google Scholar 

  18. Khan O. Can clinical outcomes be used to detect neuroprotection in multiple sclerosis? Neurology. 2007;68(22 Suppl 3):S64–71 (discussion S91–6). doi:10.1212/01.wnl.0000275235.43506.d2.

  19. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.

    PubMed  CAS  Google Scholar 

  20. Bermel RA, Inglese M. Neurodegeneration and inflammation in MS: the eye teaches us about the storm. Neurology. 2013;80(1):19–20. doi:10.1212/WNL.0b013e31827b1b6c.

    PubMed  Google Scholar 

  21. Cohen JA, Reingold SC, Polman CH, Wolinsky JS. Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects. Lancet Neurol. 2012;11(5):467–76. doi:10.1016/S1474-4422(12)70059-5.

    PubMed  Google Scholar 

  22. West T, Wyatt M, High A, Bostrom A, Waubant E. Are initial demyelinating event recovery and time to second event under differential control? Neurology. 2006;67(5):809–13. doi:10.1212/01.wnl.0000234031.30756.a0.

    PubMed  CAS  Google Scholar 

  23. Mowry EM, Pesic M, Grimes B, Deen S, Bacchetti P, Waubant E. Demyelinating events in early multiple sclerosis have inherent severity and recovery. Neurology. 2009;72(7):602–8. doi:10.1212/01.wnl.0000342458.39625.91.

    PubMed  CAS  Google Scholar 

  24. Barkhof F, Calabresi PA, Miller DH, Reingold SC. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009;5(5):256–66. doi:10.1038/nrneurol.2009.41.

    PubMed  Google Scholar 

  25. Simon JH. Brain atrophy in multiple sclerosis: what we know and would like to know. Mult Scler. 2006;12(6):679–87.

    PubMed  CAS  Google Scholar 

  26. Anderson VM, Bartlett JW, Fox NC, Fisniku L, Miller DH. Detecting treatment effects on brain atrophy in relapsing remitting multiple sclerosis: sample size estimates. J Neurol. 2007;254(11):1588–94. doi:10.1007/s00415-007-0599-3.

    PubMed  Google Scholar 

  27. Altmann DR, Jasperse B, Barkhof F, Beckmann K, Filippi M, Kappos LD, et al. Sample sizes for brain atrophy outcomes in trials for secondary progressive multiple sclerosis. Neurology. 2009;72(7):595–601. doi:10.1212/01.wnl.0000335765.55346.fc.

    PubMed  CAS  Google Scholar 

  28. Healy B, Valsasina P, Filippi M, Bakshi R. Sample size requirements for treatment effects using gray matter, white matter and whole brain volume in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009;80(11):1218–23. doi:10.1136/jnnp.2008.154732.

    PubMed  CAS  Google Scholar 

  29. Calabrese M, Rinaldi F, Mattisi I, Bernardi V, Favaretto A, Perini P, et al. The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology. 2011;77(3):257–63. doi:10.1212/WNL.0b013e318220abd4.

    PubMed  CAS  Google Scholar 

  30. Giacomini PS, Arnold DL. Non-conventional MRI techniques for measuring neuroprotection, repair and plasticity in multiple sclerosis. Curr Opinion Neurol. 2008;21(3):272–7. doi:10.1097/WCO.0b013e328300525b.

    Google Scholar 

  31. Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, Hannoun S, Sappey-Marinier D, Confavreux C, Cotton F. Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. AJNR Am J Neuroradiol. 2012;33(10):1918–24. doi:10.3174/ajnr.A3107.

    PubMed  CAS  Google Scholar 

  32. Balcer LJ, Baier ML, Pelak VS, Fox RJ, Shuwairi S, Galetta SL, et al. New low-contrast vision charts: reliability and test characteristics in patients with multiple sclerosis. Mult Scler. 2000;6(3):163–71.

    PubMed  CAS  Google Scholar 

  33. Balcer LJ, Frohman EM. Evaluating loss of visual function in multiple sclerosis as measured by low-contrast letter acuity. Neurology. 2010;74(Suppl 3):S16–23. doi:10.1212/WNL.0b013e3181dbb664.

    PubMed  Google Scholar 

  34. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology. 2006;113(2):324–32. doi:10.1016/j.ophtha.2005.10.040.

    PubMed  Google Scholar 

  35. Balcer LJ, Galetta SL, Calabresi PA, Confavreux C, Giovannoni G, Havrdova E, et al. Natalizumab reduces visual loss in patients with relapsing multiple sclerosis. Neurology. 2007;68(16):1299–304. doi:10.1212/01.wnl.0000259521.14704.a8.

    PubMed  CAS  Google Scholar 

  36. Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol. 2005;58(3):383–91. doi:10.1002/ana.20575.

    PubMed  Google Scholar 

  37. Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, Balcer LJ, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69(16):1603–9. doi:10.1212/01.wnl.0000295995.46586.ae.

    PubMed  CAS  Google Scholar 

  38. Grazioli E, Zivadinov R, Weinstock-Guttman B, Lincoff N, Baier M, Wong JR, et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci. 2008;268(1–2):12–7. doi:10.1016/j.jns.2007.10.020.

    PubMed  Google Scholar 

  39. Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, Garcia-Layana A, Bejarano B, Villoslada P. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology. 2007;68(18):1488–94. doi:10.1212/01.wnl.0000260612.51849.ed.

    PubMed  Google Scholar 

  40. Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9(9):921–32. doi:10.1016/S1474-4422(10)70168-X.

    PubMed  Google Scholar 

  41. Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ. Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol. 2011;31(4):362–73. doi:10.1097/WNO.0b013e318238937f.

    PubMed  Google Scholar 

  42. Cettomai D, Pulicken M, Gordon-Lipkin E, Salter A, Frohman TC, Conger A, et al. Reproducibility of optical coherence tomography in multiple sclerosis. Arch Neurol. 2008;65(9):1218–22. doi:10.1001/archneur.65.9.1218.

    PubMed  Google Scholar 

  43. Saidha S, Syc SB, Durbin MK, Eckstein C, Oakley JD, Meyer SA, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011;17(12):1449–63. doi:10.1177/1352458511418630.

    PubMed  Google Scholar 

  44. Laron M, Cheng H, Zhang B, Schiffman JS, Tang RA, Frishman LJ. Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients. Mult Scler. 2010;16(4):412–26. doi:10.1177/1352458509359782.

    PubMed  Google Scholar 

  45. Frohman AR, Schnurman Z, Conger A, Conger D, Beh S, Greenberg B, et al. Multifocal visual evoked potentials are influenced by variable contrast stimulation in MS. Neurology. 2012;79(8):797–801. doi:10.1212/WNL.0b013e3182661edc.

    PubMed  Google Scholar 

  46. Klistorner A, Garrick R, Paine M, Graham SL, Arvind H, Van Der Walt A, et al. Relationship between chronic demyelination of the optic nerve and short term axonal loss. J Neurol Neurosurg Psychiatry. 2012;83(3):311-4. doi:10.1136/jnnp-2011-300928.

    Google Scholar 

  47. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W. Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain. 2000;123(Pt 6):1174–83.

    PubMed  Google Scholar 

  48. Neumann H, Medana IM, Bauer J, Lassmann H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 2002;25(6):313–9.

    PubMed  CAS  Google Scholar 

  49. Gartner D, Hoff H, Gimsa U, Burmester GR, Brunner-Weinzierl MC. CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J Neuroimmunol. 2006;172(1–2):73–84. doi:10.1016/j.jneuroim.2005.11.003.

    PubMed  Google Scholar 

  50. Geurts JJ, Wolswijk G, Bo L, van der Valk P, Polman CH, Troost D, et al. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain. 2003;126(Pt 8):1755–66. doi:10.1093/brain/awg179.

    PubMed  CAS  Google Scholar 

  51. Werner P, Pitt D, Raine CS. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol. 2001;50(2):169–80.

    PubMed  CAS  Google Scholar 

  52. Bo L, Dawson TM, Wesselingh S, Mork S, Choi S, Kong PA, et al. Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Annals Neurol. 1994;36(5):778–86. doi:10.1002/ana.410360515.

    CAS  Google Scholar 

  53. Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002;1(4):232–41.

    PubMed  CAS  Google Scholar 

  54. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000;157(1):267–76. doi:10.1016/S0002-9440(10)64537-3.

    PubMed  CAS  Google Scholar 

  55. Lassmann H. Axonal injury in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2003;74(6):695–7.

    PubMed  CAS  Google Scholar 

  56. Dandekar AA, Wu GF, Pewe L, Perlman S. Axonal damage is T cell mediated and occurs concomitantly with demyelination in mice infected with a neurotropic coronavirus. J Virol. 2001;75(13):6115–20. doi:10.1128/JVI.75.13.6115-6120.2001.

    PubMed  CAS  Google Scholar 

  57. Medana IM, Esiri MM. Axonal damage: a key predictor of outcome in human CNS diseases. Brain. 2003;126(Pt 3):515–30.

    PubMed  CAS  Google Scholar 

  58. Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci. 2008;274(1–2):48–53. doi:10.1016/j.jns.2008.06.029.

    PubMed  CAS  Google Scholar 

  59. Doherty GH. Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories. Neurosci Bull. 2011;27(6):366–82. doi:10.1007/s12264-011-1530-6.

    PubMed  CAS  Google Scholar 

  60. Hogg N. The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol. 2002;42:585–600. doi:10.1146/annurev.pharmtox.42.092501.104328.

    PubMed  CAS  Google Scholar 

  61. Bruck W. Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J Neurol. 2005;252(Suppl 5):v10–5. doi:10.1007/s00415-005-5003-6.

    PubMed  Google Scholar 

  62. Diaz-Sanchez M, Williams K, DeLuca GC, Esiri MM. Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol. 2006;111(4):289–99. doi:10.1007/s00401-006-0045-0.

    PubMed  CAS  Google Scholar 

  63. Bechtold DA, Smith KJ. Sodium-mediated axonal degeneration in inflammatory demyelinating disease. J Neurol Sci. 2005;233(1–2):27–35. doi:10.1016/j.jns.2005.03.003.

    PubMed  CAS  Google Scholar 

  64. Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8(3):280–91. doi:10.1016/S1474-4422(09)70043-2.

    PubMed  CAS  Google Scholar 

  65. Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology. 2001;57(7):1248–52.

    PubMed  CAS  Google Scholar 

  66. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705–12. doi:10.1093/brain/awh641.

    PubMed  Google Scholar 

  67. Dziedzic T, Metz I, Dallenga T, Konig FB, Muller S, Stadelmann C, et al. Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol. 2010;20(5):976–85. doi:10.1111/j.1750-3639.2010.00401.x.

    PubMed  Google Scholar 

  68. Waxman SG. Acquired channelopathies in nerve injury and MS. Neurology. 2001;56(12):1621–7.

    PubMed  CAS  Google Scholar 

  69. Kornek B, Storch MK, Bauer J, Djamshidian A, Weissert R, Wallstroem E, et al. Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain. 2001;124(Pt 6):1114–24.

    PubMed  CAS  Google Scholar 

  70. Compston A. Remyelination of the central nervous system. Mult Scler. 1996;1(6):388–92.

    PubMed  CAS  Google Scholar 

  71. Wilkins A, Compston A. Trophic factors attenuate nitric oxide mediated neuronal and axonal injury in vitro: roles and interactions of mitogen-activated protein kinase signalling pathways. J Neurochem. 2005;92(6):1487–96. doi:10.1111/j.1471-4159.2004.02981.x.

    PubMed  CAS  Google Scholar 

  72. Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG. Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain. 2004;127(Pt 2):294–303. doi:10.1093/brain/awh032.

    PubMed  Google Scholar 

  73. Waxman SG, Craner MJ, Black JA. Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol Sci. 2004;25(11):584–91. doi:10.1016/j.tips.2004.09.001.

    PubMed  CAS  Google Scholar 

  74. Black JA, Newcombe J, Trapp BD, Waxman SG. Sodium channel expression within chronic multiple sclerosis plaques. J Neuropathol Exp Neurol. 2007;66(9):828–37. doi:10.1097/nen.0b013e3181462841.

    PubMed  CAS  Google Scholar 

  75. Stys PK, Ransom BR, Waxman SG, Davis PK. Role of extracellular calcium in anoxic injury of mammalian central white matter. Proc Natl Acad Sci USA. 1990;87(11):4212–6.

    PubMed  CAS  Google Scholar 

  76. Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci. 1992;12(2):430–9.

    PubMed  CAS  Google Scholar 

  77. Wilkins A, Chandran S, Compston A. A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia. 2001;36(1):48–57.

    PubMed  CAS  Google Scholar 

  78. Laursen LS, Ffrench-Constant C. Adhesion molecules in the regulation of CNS myelination. Neuron Glia Biol. 2007;3(4):367–75. doi:10.1017/S1740925X08000161.

    PubMed  Google Scholar 

  79. Nataf S. Neuroinflammation responses and neurodegeneration in multiple sclerosis. Rev Neurol (Paris). 2009;165(12):1023–8. doi:10.1016/j.neurol.2009.09.012.

    CAS  Google Scholar 

  80. Zhang SC, Goetz BD, Carré JL, Duncan ID. Reactive microglia in dysmyelination and demyelination. Glia. 2001;34:101–9.

    PubMed  CAS  Google Scholar 

  81. Frederick TJ, Miller SD. Future of multiple sclerosis therapy: combining antigen-specific immunotherapy with strategies to promote myelin repair. Future Neurol. 2006;1:489–503.

    CAS  Google Scholar 

  82. Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012;8(11):647–56. doi:10.1038/nrneurol.2012.168.

    PubMed  CAS  Google Scholar 

  83. Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci. 2011;33(3–4):199–209. doi:10.1159/000328989.Epub2011Jul15.

    PubMed  CAS  Google Scholar 

  84. Spencer PS, Thomas PK. Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons. J Neurocytol. 1974;3(6):763–83.

    PubMed  CAS  Google Scholar 

  85. Novotny GE. Formation of cytoplasm-containing vesicles from double-walled coated invaginations containing oligodendrocytic cytoplasm at the axon-myelin sheath interface in adult mammalian central nervous system. Acta Anat (Basel). 1984;119(2):106–12.

    CAS  Google Scholar 

  86. Krämer-Albers EM, Bretz N, Tenzer S, Winterstein C, Möbius W, Berger H, Nave KA, Schild H, Trotter J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl. 2007;1(11):1446–61. doi: 10.1002/prca.200700522.

    Google Scholar 

  87. Wilkins A, Majed H, Layfield R, Compston A, Chandran S. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003;23(12):4967–74.

    PubMed  CAS  Google Scholar 

  88. Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786–801. doi:10.1056/NEJMoa0802670.

    PubMed  Google Scholar 

  89. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401. doi:10.1056/NEJMoa0909494.

    PubMed  CAS  Google Scholar 

  90. Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation. 2011;8:76. doi:10.1186/1742-2094-8-76.

    PubMed  CAS  Google Scholar 

  91. Di Menna L, Molinaro G, Di Nuzzo L, Riozzi B, Zappulla C, Pozzilli C, Turrini R, Caraci F, Copani A, Battaglia G, Nicoletti F, Bruno V. Fingolimod protects cultured cortical neurons against excitotoxic death. Pharmacol Res. 2013;67(1):1–9. doi:10.1016/j.phrs.2012.10.004.

    PubMed  Google Scholar 

  92. Stessin AM, Gursel DB, Schwartz A, Parashar B, Kulidzhanov FG, Sabbas AM, Boockvar J, Nori D, Wernicke AG. FTY720, sphingosine 1-phosphate receptor modulator, selectively radioprotects hippocampal neural stem cells. Neurosci Lett. 2012;516(2):253–8. doi:10.1016/j.neulet.2012.04.004.

    PubMed  CAS  Google Scholar 

  93. Wegner C, Stadelmann C, Pfortner R, Raymond E, Feigelson S, Alon R, et al. Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;227(1–2):133–43. doi:10.1016/j.jneuroim.2010.07.009.

    PubMed  CAS  Google Scholar 

  94. Runstrom A, Leanderson T, Ohlsson L, Axelsson B. Inhibition of the development of chronic experimental autoimmune encephalomyelitis by laquinimod (ABR-215062) in IFN-beta k.o. and wild type mice. J Neuroimmunol. 2006;173(1–2):69–78. doi:10.1016/j.jneuroim.2005.11.023.

    PubMed  Google Scholar 

  95. Brunmark C, Runstrom A, Ohlsson L, Sparre B, Brodin T, Astrom M, et al. The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;130(1–2):163–72.

    PubMed  CAS  Google Scholar 

  96. Thone J, Ellrichmann G, Seubert S, Peruga I, Lee DH, Conrad R, et al. Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am J Pathol. 2012;180(1):267–74. doi:10.1016/j.ajpath.2011.09.037.

    PubMed  Google Scholar 

  97. Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4(3):159–69. doi:10.1038/ncpneuro0735.

    PubMed  CAS  Google Scholar 

  98. Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia. 2005;49:220–9.

    PubMed  Google Scholar 

  99. Carrithers MD, Dib-Hajj S, Carrithers LM, Tokmoulina G, Pypaert M, Jonas EA, Waxman SG. Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification. J Immunol. 2007;178(12):7822–32.

    PubMed  CAS  Google Scholar 

  100. Black JA, Liu S, Waxman SG. Sodium channel activity modulates multiple functions in microglia. Glia. 2009;57(10):1072–81. doi:10.1002/glia.20830.

    PubMed  Google Scholar 

  101. Black JA, Newcombe J, Waxman SG. Nav1.5 sodium channels in macrophages in multiple sclerosis lesions. Mult Scler. 2013;19(5):532–42. doi:10.1177/1352458512460417.

    PubMed  Google Scholar 

  102. Lo AC, Saab CY, Black JA, Waxman SG. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J Neurophysiol. 2003;90(5):3566–71. (Epub 2003 Aug 6).

    Google Scholar 

  103. Black JA, Liu S, Hains BC, Saab CY, Waxman SG. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain. 2006;129(Pt 12):3196–208. doi:10.1093/brain/awl216.

    PubMed  Google Scholar 

  104. Bechtold DA, Kapoor R, Smith KJ. Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann Neurol. 2004;55(5):607–16. doi:10.1002/ana.20045.

    PubMed  CAS  Google Scholar 

  105. Bechtold DA, Miller SJ, Dawson AC, Sun Y, Kapoor R, Berry D, et al. Axonal protection achieved in a model of multiple sclerosis using lamotrigine. J Neurol. 2006;253(12):1542–51. doi:10.1007/s00415-006-0204-1.

    PubMed  Google Scholar 

  106. Black JA, Liu S, Carrithers M, Carrithers LM, Waxman SG. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Ann Neurol. 2007;62(1):21–33. doi:10.1002/ana.21172.

    PubMed  CAS  Google Scholar 

  107. Kapoor R, Furby J, Hayton T, Smith KJ, Altmann DR, Brenner R, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9(7):681–8. doi:10.1016/S1474-4422(10)70131-9.

    PubMed  CAS  Google Scholar 

  108. Wemmie JA, Price MP, Welsh MJ. Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci. 2006;29(10):578–86. doi:10.1016/j.tins.2006.06.014.

    PubMed  CAS  Google Scholar 

  109. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2007;13(12):1483–9. doi:10.1038/nm1668.

    PubMed  CAS  Google Scholar 

  110. Vergo S, Craner MJ, Etzensperger R, Attfield K, Friese MA, Newcombe J, et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain. 2011;134(Pt 2):571–84. doi:10.1093/brain/awq337.

    PubMed  Google Scholar 

  111. Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, et al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain. 2013;136(Pt 1):106–15. doi:10.1093/brain/aws325.

    PubMed  Google Scholar 

  112. Imaizumi T, Kocsis JD, Waxman SG. The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter. Brain Res. 1999;817(1–2):84–92.

    PubMed  CAS  Google Scholar 

  113. Brand-Schieber E, Werner P. Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp Neurol. 2004;189(1):5–9. doi:10.1016/j.expneurol.2004.05.023.

    PubMed  CAS  Google Scholar 

  114. Ouardouz M, Malek S, Coderre E, Stys PK. Complex interplay between glutamate receptors and intracellular Ca2+ stores during ischaemia in rat spinal cord white matter. J Physiol. 2006;577(Pt 1):191–204. doi:10.1113/jphysiol.2006.116798.

    PubMed  CAS  Google Scholar 

  115. Schaecher KE, Shields DC, Banik NL. Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res. 2001;26(6):731–7.

    PubMed  CAS  Google Scholar 

  116. Hassen GW, Feliberti J, Kesner L, Stracher A, Mokhtarian F. Prevention of axonal injury using calpain inhibitor in chronic progressive experimental autoimmune encephalomyelitis. Brain Res. 2008;1236:206–15. doi:10.1016/j.brainres.2008.07.124.

    PubMed  Google Scholar 

  117. Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med. 2000;6(1):67–70. doi:10.1038/71555.

    PubMed  CAS  Google Scholar 

  118. Smith T, Groom A, Zhu B, Turski L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med. 2000;6(1):62–6. doi:10.1038/71548.

    PubMed  CAS  Google Scholar 

  119. Wallstrom E, Diener P, Ljungdahl A, Khademi M, Nilsson CG, Olsson T. Memantine abrogates neurological deficits, but not CNS inflammation, in Lewis rat experimental autoimmune encephalomyelitis. J Neurol Sci. 1996;137(2):89–96.

    PubMed  CAS  Google Scholar 

  120. Lovera JF, Frohman E, Brown TR, Bandari D, Nguyen L, Yadav V, et al. Memantine for cognitive impairment in multiple sclerosis: a randomized placebo-controlled trial. Mult Scler. 2010;16(6):715–23. doi:10.1177/1352458510367662.

    PubMed  CAS  Google Scholar 

  121. Cheah BC, Vucic S, Krishnan AV, Kiernan MC. Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem. 2010;17(18):1942–59.

    Google Scholar 

  122. Gilgun-Sherki Y, Panet H, Melamed E, Offen D. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res. 2003;989(2):196–204.

    PubMed  CAS  Google Scholar 

  123. Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler. 2002;8(6):532–3.

    PubMed  CAS  Google Scholar 

  124. Schiefer IT, VandeVrede L, Fa M, Arancio O, Thatcher GR. Furoxans (1,2,5-oxadiazole-N-oxides) as novel NO mimetic neuroprotective and procognitive agents. J Med Chem. 2012;55(7):3076–87. doi:10.1021/jm201504s.

    PubMed  CAS  Google Scholar 

  125. Denes L, Szilagyi G, Gal A, Nagy Z. Talampanel a non-competitive AMPA-antagonist attenuates caspase-3 dependent apoptosis in mouse brain after transient focal cerebral ischemia. Brain Res Bull. 2006;70(3):260–2. doi:10.1016/j.brainresbull.2006.02.024.

    PubMed  CAS  Google Scholar 

  126. Erdo F, Berzsenyi P, Andrasi F. The AMPA-antagonist talampanel is neuroprotective in rodent models of focal cerebral ischemia. Brain Res Bull. 2005;66(1):43–9. doi:10.1016/j.brainresbull.2005.03.012.

    PubMed  CAS  Google Scholar 

  127. Pascuzzi RM, Shefner J, Chappell AS, Bjerke JS, Tamura R, Chaudhry V, et al. A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11(3):266–71. doi:10.3109/17482960903307805.

    PubMed  CAS  Google Scholar 

  128. Sargin D, Friedrichs H, El-Kordi A, Ehrenreich H. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol. 2010;24(4):573–94. doi:10.1016/j.bpa.2010.10.005.

    PubMed  CAS  Google Scholar 

  129. Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, et al. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res. 2002;952(1):128–34.

    PubMed  CAS  Google Scholar 

  130. Li W, Maeda Y, Yuan RR, Elkabes S, Cook S, Dowling P. Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol. 2004;56(6):767–77. doi:10.1002/ana.20274.

    PubMed  CAS  Google Scholar 

  131. Sattler MB, Merkler D, Maier K, Stadelmann C, Ehrenreich H, Bahr M, et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ. 2004;11(Suppl 2):S181–92. doi:10.1038/sj.cdd.4401504.

    PubMed  Google Scholar 

  132. Ehrenreich H, Fischer B, Norra C, Schellenberger F, Stender N, Stiefel M, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain. 2007;130(Pt 10):2577–88. doi:10.1093/brain/awm203.

    PubMed  Google Scholar 

  133. Suhs KW, Hein K, Sattler MB, Gorlitz A, Ciupka C, Scholz K, et al. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol. 2012;72(2):199–210. doi:10.1002/ana.23573.

    PubMed  Google Scholar 

  134. Cannella B, Pitt D, Capello E, Raine CS. Insulin-like growth factor-1 fails to enhance central nervous system myelin repair during autoimmune demyelination. Am J Pathol. 2000;157(3):933–43. doi:10.1016/S0002-9440(10)64606-8.

    PubMed  CAS  Google Scholar 

  135. Genoud S, Maricic I, Kumar V, Gage FH. Targeted expression of IGF-1 in the central nervous system fails to protect mice from experimental autoimmune encephalomyelitis. J Neuroimmunol. 2005;168(1–2):40–5. doi:10.1016/j.jneuroim.2005.06.033.

    PubMed  CAS  Google Scholar 

  136. Li W, Quigley L, Yao DL, Hudson LD, Brenner M, Zhang BJ, et al. Chronic relapsing experimental autoimmune encephalomyelitis: effects of insulin-like growth factor-I treatment on clinical deficits, lesion severity, glial responses, and blood brain barrier defects. J Neuropathol Exp Neurol. 1998;57(5):426–38.

    PubMed  CAS  Google Scholar 

  137. Liu X, Yao DL, Webster H. Insulin-like growth factor I treatment reduces clinical deficits and lesion severity in acute demyelinating experimental autoimmune encephalomyelitis. Mult Scler. 1995;1(1):2–9.

    PubMed  CAS  Google Scholar 

  138. McCombe PA. Recombinant EPF/chaperonin 10 promotes the survival of O4-positive pro-oligodendrocytes prepared from neonatal rat brain. Cell Stress Chaperones. 2008;13(4):467–74. doi:10.1007/s12192-008-0045-1.

    PubMed  CAS  Google Scholar 

  139. McMorris FA, McKinnon RD. Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol. 1996;6(3):313–29.

    PubMed  CAS  Google Scholar 

  140. Yao DL, Liu X, Hudson LD, Webster HD. Insulin-like growth factor-I given subcutaneously reduces clinical deficits, decreases lesion severity and upregulates synthesis of myelin proteins in experimental autoimmune encephalomyelitis. Life Sci. 1996;58(16):1301–6.

    PubMed  CAS  Google Scholar 

  141. Joseph D’Ercole A, Ye P. Expanding the mind: insulin-like growth factor I and brain development. Endocrinology. 2008;149(12):5958–62. doi:10.1210/en.2008-0920.

  142. Liu X, Linnington C, Webster HD, Lassmann S, Yao DL, Hudson LD, et al. Insulin-like growth factor-I treatment reduces immune cell responses in acute non-demyelinative experimental autoimmune encephalomyelitis. J Neurosci Res. 1997;47(5):531–8.

    PubMed  CAS  Google Scholar 

  143. Frank JA, Richert N, Lewis B, Bash C, Howard T, Civil R, et al. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sderosis patients. Mult Scler. 2002;8(1):24–9.

    PubMed  CAS  Google Scholar 

  144. Fenyk-Melody JE, Garrison AE, Brunnert SR, Weidner JR, Shen F, Shelton BA, et al. Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J Immunol. 1998;160(6):2940–6.

    PubMed  CAS  Google Scholar 

  145. Garthwaite G, Goodwin DA, Batchelor AM, Leeming K, Garthwaite J. Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience. 2002;109(1):145–55.

    PubMed  CAS  Google Scholar 

  146. Golde S, Coles A, Lindquist JA, Compston A. Decreased iNOS synthesis mediates dexamethasone-induced protection of neurons from inflammatory injury in vitro. Eur J Neurosci. 2003;18(9):2527–37.

    PubMed  Google Scholar 

  147. Petrovska S, Dejanova B, Jurisic V. Estrogens: mechanisms of neuroprotective effects. J Physiol Biochem. 2012;68(3):455–60. doi:10.1007/s13105-012-0159-x.

    PubMed  CAS  Google Scholar 

  148. Morales LB, Loo KK, Liu HB, Peterson C, Tiwari-Woodruff S, Voskuhl RR. Treatment with an estrogen receptor alpha ligand is neuroprotective in experimental autoimmune encephalomyelitis. J Neurosci. 2006;26(25):6823–33. doi:10.1523/JNEUROSCI.0453-06.2006.

    PubMed  CAS  Google Scholar 

  149. Polanczyk M, Zamora A, Subramanian S, Matejuk A, Hess DL, Blankenhorn EP, et al. The protective effect of 17beta-estradiol on experimental autoimmune encephalomyelitis is mediated through estrogen receptor-alpha. Am J Pathol. 2003;163(4):1599–605.

    PubMed  CAS  Google Scholar 

  150. Tiwari-Woodruff S, Morales LB, Lee R, Voskuhl RR. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment. Proc Natl Acad Sci USA. 2007;104(37):14813–8. doi:10.1073/pnas.0703783104.

    PubMed  Google Scholar 

  151. Spence RD, Hamby ME, Umeda E, Itoh N, Du S, Wisdom AJ, et al. Neuroprotection mediated through estrogen receptor-alpha in astrocytes. Proc Natl Acad Sci USA. 2011;108(21):8867–72. doi:10.1073/pnas.1103833108.

    PubMed  CAS  Google Scholar 

  152. Crawford DK, Mangiardi M, Song B, Patel R, Du S, Sofroniew MV, et al. Oestrogen receptor beta ligand: a novel treatment to enhance endogenous functional remyelination. Brain. 2010;133(10):2999–3016. doi:10.1093/brain/awq237.

    PubMed  Google Scholar 

  153. McDowell ML, Das A, Smith JA, Varma AK, Ray SK, Banik NL. Neuroprotective effects of genistein in VSC4.1 motoneurons exposed to activated microglial cytokines. Neurochem Int. 2011;59(2):175–84. doi:10.1016/j.neuint.2011.04.011.

    PubMed  CAS  Google Scholar 

  154. Bialek M, Zaremba P, Borowicz KK, Czuczwar SJ. Neuroprotective role of testosterone in the nervous system. Polish J Pharmacol. 2004;56(5):509–18.

    CAS  Google Scholar 

  155. Dalal M, Kim S, Voskuhl RR. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J Immunol. 1997;159(1):3–6.

    PubMed  CAS  Google Scholar 

  156. Palaszynski KM, Loo KK, Ashouri JF, Liu HB, Voskuhl RR. Androgens are protective in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neuroimmunol. 2004;146(1–2):144–52.

    PubMed  CAS  Google Scholar 

  157. Sicotte NL, Giesser BS, Tandon V, Klutch R, Steiner B, Drain AE, et al. Testosterone treatment in multiple sclerosis: a pilot study. Arch Neurol. 2007;64(5):683–8. doi:10.1001/archneur.64.5.683.

    PubMed  Google Scholar 

  158. Gold SM, Chalifoux S, Giesser BS, Voskuhl RR. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone. J Neuroinflammation. 2008;5:32. doi:10.1186/1742-2094-5-32.

    PubMed  Google Scholar 

  159. Neves AR, Lucio M, Lima JL, Reis S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Med Chem. 2012;19(11):1663–81.

    PubMed  CAS  Google Scholar 

  160. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol. 2011;95(3):373–95. doi:10.1016/j.pneurobio.2011.09.001.

    PubMed  CAS  Google Scholar 

  161. Fonseca-Kelly Z, Nassrallah M, Uribe J, Khan RS, Dine K, Dutt M, et al. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis. Front Neurol. 2012;3:84. doi:10.3389/fneur.2012.00084.

    PubMed  Google Scholar 

  162. Singh NP, Hegde VL, Hofseth LJ, Nagarkatti M, Nagarkatti P. Resveratrol (trans-3,5,4’-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol Pharmacol. 2007;72(6):1508–21. doi:10.1124/mol.107.038984.

    PubMed  CAS  Google Scholar 

  163. Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC, Rostami A. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuro-ophthalmol. 2010;30(4):328–39. doi:10.1097/WNO.0b013e3181f7f833.

    Google Scholar 

  164. Shindler KS, Ventura E, Rex TS, Elliott P, Rostami A. SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Visual Sci. 2007;48(8):3602–9. doi:10.1167/iovs.07-0131.

    Google Scholar 

  165. Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol. 2004;173(9):5794–800.

    PubMed  CAS  Google Scholar 

  166. Lee S, Suh S, Kim S. Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett. 2000;287(3):191–4.

    PubMed  CAS  Google Scholar 

  167. Herges K, Millward JM, Hentschel N, Infante-Duarte C, Aktas O, Zipp F. Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation. PloS One. 2011;6(10):e25456. doi:10.1371/journal.pone.0025456.

    PubMed  CAS  Google Scholar 

  168. Weber MS, Youssef S, Dunn SE, Prod’homme T, Neuhaus O, Stuve O, et al. Statins in the treatment of central nervous system autoimmune disease. J Neuroimmunol. 2006;178(1–2):140–8. doi:10.1016/j.jneuroim.2006.06.006.

    PubMed  CAS  Google Scholar 

  169. van der Most PJ, Dolga AM, Nijholt IM, Luiten PG, Eisel UL. Statins: mechanisms of neuroprotection. Prog Neurobiol. 2009;88(1):64–75. doi:10.1016/j.pneurobio.2009.02.002.

    PubMed  Google Scholar 

  170. Aktas O, Waiczies S, Smorodchenko A, Dorr J, Seeger B, Prozorovski T, et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med. 2003;197(6):725–33. doi:10.1084/jem.20021425.

    PubMed  CAS  Google Scholar 

  171. Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, Baker D, et al. Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J. 2003;17(8):905–7. doi:10.1096/fj.02-1014fje.

    PubMed  CAS  Google Scholar 

  172. Paintlia AS, Paintlia MK, Singh AK, Stanislaus R, Gilg AG, Barbosa E, et al. Regulation of gene expression associated with acute experimental autoimmune encephalomyelitis by Lovastatin. J Neurosci Res. 2004;77(1):63–81. doi:10.1002/jnr.20130.

    PubMed  CAS  Google Scholar 

  173. Berger C, Xia F, Maurer MH, Schwab S. Neuroprotection by pravastatin in acute ischemic stroke in rats. Brain Res Rev. 2008;58(1):48–56. doi:10.1016/j.brainresrev.2007.10.010.

    PubMed  CAS  Google Scholar 

  174. Sironi L, Cimino M, Guerrini U, Calvio AM, Lodetti B, Asdente M, et al. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arterioscler Thromb Vasc Biol. 2003;23(2):322–7.

    PubMed  CAS  Google Scholar 

  175. Paintlia AS, Paintlia MK, Singh I, Skoff RB, Singh AK. Combination therapy of lovastatin and rolipram provides neuroprotection and promotes neurorepair in inflammatory demyelination model of multiple sclerosis. Glia. 2009;57(2):182–93. doi:10.1002/glia.20745.

    PubMed  Google Scholar 

  176. Waubant E, Pelletier D, Mass M, Cohen JA, Kita M, Cross A, et al. Randomized controlled trial of atorvastatin in clinically isolated syndrome: the STAyCIS study. Neurology. 2012;78(15):1171–8. doi:10.1212/WNL.0b013e31824f7fdd.

    PubMed  CAS  Google Scholar 

  177. Chataway J, Alsanousi A, Chan D, MacManus D, Hunter K, Foster J, et al. The MS-STAT trial: high dose simvastatin demonstrates neuroprotection without immune-modulation in secondary progressive multiple sclerosis (SPMS)—a phase II trial. Mult Scler. 2012;18(S4):509.

    Google Scholar 

  178. Snyder SH, Lai MM, Burnett PE. Immunophilins in the nervous system. Neuron. 1998;21(2):283–94.

    PubMed  CAS  Google Scholar 

  179. Bove J, Martinez-Vicente M, Vila M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci. 2011;12(8):437–52. doi:10.1038/nrn3068.

    PubMed  CAS  Google Scholar 

  180. Gold BG, Voda J, Yu X, McKeon G, Bourdette DN. FK506 and a nonimmunosuppressant derivative reduce axonal and myelin damage in experimental autoimmune encephalomyelitis: neuroimmunophilin ligand-mediated neuroprotection in a model of multiple sclerosis. J Neurosci Res. 2004;77(3):367–77. doi:10.1002/jnr.20165.

    PubMed  CAS  Google Scholar 

  181. Moraal B, van den Elskamp IJ, Knol DL, Uitdehaag BM, Geurts JJ, Vrenken H, et al. Long-interval T2-weighted subtraction magnetic resonance imaging: a powerful new outcome measure in multiple sclerosis trials. Ann Neurol. 2010;67(5):667–75. doi:10.1002/ana.21958.

    PubMed  Google Scholar 

  182. Kappos L, Barkhof F, Desmet A. The effect of oral temsirolimus on new magnetic resonance imaging scan lesions, brain atrophy, and the number of relapses in multiple sclerosis: results from a randomised, controlled trial. J Neurol. 2005;2005(252 (Supple 2):46.

  183. Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol. 1996;12:335–63. doi:10.1146/annurev.cellbio.12.1.335.

    PubMed  CAS  Google Scholar 

  184. Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, et al. Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol. 2002;51(6):694–702. doi:10.1002/ana.10206.

    PubMed  CAS  Google Scholar 

  185. Gray E, Ginty M, Kemp K, Scolding N, Wilkins A. The PPAR-gamma agonist pioglitazone protects cortical neurons from inflammatory mediators via improvement in peroxisomal function. J Neuroinflammation. 2012;9:63. doi:10.1186/1742-2094-9-63.

    PubMed  CAS  Google Scholar 

  186. Kaiser CC, Shukla DK, Stebbins GT, Skias DD, Jeffery DR, Stefoski D, et al. A pilot test of pioglitazone as an add-on in patients with relapsing remitting multiple sclerosis. J Neuroimmunol. 2009;211(1–2):124–30. doi:10.1016/j.jneuroim.2009.04.011.

    PubMed  CAS  Google Scholar 

  187. Shukla DK, Kaiser CC, Stebbins GT, Feinstein DL. Effects of pioglitazone on diffusion tensor imaging indices in multiple sclerosis patients. Neurosci Lett. 2010;472(3):153–6. doi:10.1016/j.neulet.2010.01.046.

    PubMed  CAS  Google Scholar 

  188. Ferwana M, Firwana B, Hasan R, Al-Mallah MH, Kim S, Montori VM, et al. Pioglitazone and risk of bladder cancer: a meta-analysis of controlled studies. Diabet Med. 2013;. doi:10.1111/dme.12144.

    PubMed  Google Scholar 

  189. Al-Izki S, Pryce G, Jackson SJ, Giovannoni G, Baker D. Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis. Mult Scler. 2011;17(8):939–48. doi:10.1177/1352458511400476.

    PubMed  Google Scholar 

  190. Barkhof F, Hulst HE, Drulovic J, Uitdehaag BM, Matsuda K, Landin R. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant? Neurology. 2010;74(13):1033–40. doi:10.1212/WNL.0b013e3181d7d651.

    PubMed  CAS  Google Scholar 

  191. Chen X, Ma L, Jiang Y, Chen S, Zhu C, Liu M, et al. Minocycline up-regulates the expression of brain-derived neurotrophic factor and nerve growth factor in experimental autoimmune encephalomyelitis. Eur J Pharmacol. 2012;686(1–3):124–9. doi:10.1016/j.ejphar.2012.04.043.

    PubMed  CAS  Google Scholar 

  192. Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain. 2002;125(Pt 6):1297–308.

    PubMed  Google Scholar 

  193. Giuliani F, Fu SA, Metz LM, Yong VW. Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. J Neuroimmunol. 2005;165(1–2):83–91. doi:10.1016/j.jneuroim.2005.04.020.

    PubMed  CAS  Google Scholar 

  194. Chen X, Pi R, Liu M, Ma X, Jiang Y, Liu Y, et al. Combination of methylprednisolone and minocycline synergistically improves experimental autoimmune encephalomyelitis in C57 BL/6 mice. J Neuroimmunol. 2010;226(1–2):104–9. doi:10.1016/j.jneuroim.2010.05.039.

    PubMed  CAS  Google Scholar 

  195. Chen X, Ma X, Jiang Y, Pi R, Liu Y, Ma L. The prospects of minocycline in multiple sclerosis. J Neuroimmunol. 2011;235(1–2):1–8. doi:10.1016/j.jneuroim.2011.04.006.

    PubMed  CAS  Google Scholar 

  196. Maier K, Merkler D, Gerber J, Taheri N, Kuhnert AV, Williams SK, et al. Multiple neuroprotective mechanisms of minocycline in autoimmune CNS inflammation. Neurobiol Dis. 2007;25(3):514–25. doi:10.1016/j.nbd.2006.10.022.

    PubMed  CAS  Google Scholar 

  197. Metz LM, Li D, Traboulsee A, Myles ML, Duquette P, Godin J, et al. Glatiramer acetate in combination with minocycline in patients with relapsing–remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler. 2009;15(10):1183–94. doi:10.1177/1352458509106779.

    PubMed  CAS  Google Scholar 

  198. Zhang Y, Metz LM, Yong VW, Bell RB, Yeung M, Patry DG, et al. Pilot study of minocycline in relapsing-remitting multiple sclerosis. Can J Neurol Sci. 2008;35(2):185–91.

    PubMed  CAS  Google Scholar 

  199. Zabad RK, Metz LM, Todoruk TR, Zhang Y, Mitchell JR, Yeung M, et al. The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Mult Scler. 2007;13(4):517–26. doi:10.1177/1352458506070319.

    PubMed  CAS  Google Scholar 

  200. Spindler M, Beal MF, Henchcliffe C. Coenzyme Q10 effects in neurodegenerative disease. Neuropsychiatr Dis Treat. 2009;5:597–610.

    PubMed  CAS  Google Scholar 

  201. Rabinovich GA, Croci DO. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity. 2012;36(3):322–35. doi:10.1016/j.immuni.2012.03.004.

    PubMed  CAS  Google Scholar 

  202. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012;37(2):249–63. doi:10.1016/j.immuni.2012.05.023.

    PubMed  CAS  Google Scholar 

  203. Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease? Ann Neurol. 2009;65(3):239–48. doi:10.1002/ana.21640.

    PubMed  CAS  Google Scholar 

  204. Sasaki T, Hirabayashi J, Manya H, Kasai K, Endo T. Galectin-1 induces astrocyte differentiation, which leads to production of brain-derived neurotrophic factor. Glycobiology. 2004;14(4):357–63. doi:10.1093/glycob/cwh043.

    PubMed  CAS  Google Scholar 

  205. Lekishvili T, Hesketh S, Brazier MW, Brown DR. Mouse galectin-1 inhibits the toxicity of glutamate by modifying NR1 NMDA receptor expression. Eur J Neurosci. 2006;24(11):3017–25. doi:10.1111/j.1460-9568.2006.05207.x.

    PubMed  Google Scholar 

  206. Nonaka M, Fukuda M. Galectin-1 for neuroprotection? Immunity. 2012;37(2):187–9. doi:10.1016/j.immuni.2012.08.006.

    PubMed  CAS  Google Scholar 

  207. Mowry EM, Krupp LB, Milazzo M, Chabas D, Strober JB, Belman AL, et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann Neurol. 2010;67(5):618–24. doi:10.1002/ana.21972.

    PubMed  CAS  Google Scholar 

  208. Mowry EM, Waubant E, McCulloch CE, Okuda DT, Evangelista AA, Lincoln RR, et al. Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis. Ann Neurol. 2012;72(2):234–40. doi:10.1002/ana.23591.

    PubMed  CAS  Google Scholar 

  209. Simpson S Jr, Taylor B, Blizzard L, Ponsonby AL, Pittas F, Tremlett H, et al. Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol. 2010;68(2):193–203. doi:10.1002/ana.22043.

    PubMed  CAS  Google Scholar 

  210. Mowry E, Waubant E, McCulloch C, Sampat M, Qualley P, Lincoln R, et al. Vitamin D levels are associated with disability and brain volume in multiple sclerosis. Neurology. 2012;78:S50.003.

    Google Scholar 

  211. Nait-Oumesmar B, Picard-Riéra N, Kerninon C, Baron-Van Evercooren A. The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. J Neurol Sci. 2008;265(1-2):26–31. (Epub 2007 Oct 24).

    Google Scholar 

  212. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci. 2006;26(30):7907–18.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Amir Hadi Maghzi is funded by the Multiple Sclerosis International Federation (http://www.msif.org) through a McDonald’s Fellowship. Dr. Waubant is funded by the National MS Society, the NIH and the Nancy Davis Foundation. No funding was received for preparation of this manuscript.

Disclosures

Dr. Waubant has received honoraria for three educational talks from Biogen Idec, Genentech, and Roche. She is an ad hoc consultant for Actelion and Sanofi Aventis. She has received free medication for a clinical trial from Sanofi Aventis and Biogen Idec. She is currently participating in clinical trials sponsored by Roche and Biogen Idec. Drs. Minagar and Maghzi have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir-Hadi Maghzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maghzi, AH., Minagar, A. & Waubant, E. Neuroprotection in Multiple Sclerosis: A Therapeutic Approach. CNS Drugs 27, 799–815 (2013). https://doi.org/10.1007/s40263-013-0093-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-013-0093-7

Keywords

Navigation