Skip to main content
Log in

Pharmacokinetic Optimization of Antiretroviral Therapy in Pregnancy

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Antiretroviral therapy suppresses replication of HIV allowing restoration and/or preservation of the immune system. Providing combination antiretroviral therapy during pregnancy can treat maternal HIV infection and/or reduce perinatal HIV transmission. However, providing treatment to pregnant women is challenging due to physiological changes that can alter antiretroviral pharmacokinetics. Suboptimal drug exposure can result in HIV RNA rebound, the selection of resistant virus or an increased risk of HIV-1 transmission to the infant. Increased drug exposure can produce unwarranted maternal adverse effects and/or fetal toxicity. Subsequently, dose adjustments may be necessary during pregnancy to achieve comparable antiretroviral exposure to non-pregnant adults. For several antiretrovirals, systemic exposure is decreased during the last trimester of pregnancy. By 6–12 weeks postpartum, concentrations return to those prior to pregnancy. Also, the extent of antiretroviral placental transfer to the fetus and degree of antiretroviral excretion into breast milk varies within, and between, antiretroviral drug classes. It is necessary to consider the pharmacological characteristics of each antiretroviral when optimizing combination therapy during pregnancy to treat maternal HIV infection and prevent perinatal HIV transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment: Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1994;331(18):1173–80.

    Article  PubMed  CAS  Google Scholar 

  2. Mofenson LM, Lambert JS, Stiehm ER, et al. Risk factors for perinatal transmission of human immunodeficiency virus type 1 in women treated with zidovudine: Pediatric AIDS Clinical Trials Group Study 185 Team. N Engl J Med. 1999;341(6):385–93.

    Article  PubMed  CAS  Google Scholar 

  3. Garcia PM, Kalish LA, Pitt J, et al. Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission: Women and Infants Transmission Study Group. N Engl J Med. 1999;341(6):394–402.

    Article  PubMed  CAS  Google Scholar 

  4. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. September 14, 2011, p. 1–207. http://aidsinfo.nih.gov/contentfiles/PediatricGuidelines.pdf. Accessed 7 May 2012.

  5. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. October 14, 2011, p. 1–167. http://aidsinfo.nih.gov/contentfiles/AdultandAdolescentGL.pdf. Accessed 7 May 2012.

  6. Acosta EP, Kakuda TN, Brundage RC, et al. Pharmacodynamics of human immunodeficiency virus type 1 protease inhibitors. Clin Infect Dis. 2000;30(Suppl 2):S151–9.

    Article  PubMed  CAS  Google Scholar 

  7. Marzolini C, Telenti A, Decosterd LA, et al. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001;15(1):71–5.

    Article  PubMed  CAS  Google Scholar 

  8. Min S, Sloan L, DeJesus E, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS. 2011;25(14):1737–45.

    Article  PubMed  CAS  Google Scholar 

  9. Weinberg A, Forster-Harwood J, Davies J, et al. Safety and tolerability of antiretrovirals during pregnancy. Infect Dis Obstet Gynecol. 2011;2011:867674.

    Article  PubMed  Google Scholar 

  10. Timmermans S, Tempelman C, Godfried MH, et al. Nelfinavir and nevirapine side effects during pregnancy. AIDS. 2005;19(8):795–9.

    Article  PubMed  CAS  Google Scholar 

  11. Mirochnick M, Capparelli E. Pharmacokinetics of antiretrovirals in pregnant women. Clin Pharmacokinet. 2004;43(15):1071–87.

    Article  PubMed  CAS  Google Scholar 

  12. Mirochnick M, Best BM, Clarke DF. Antiretroviral pharmacology: special issues regarding pregnant women and neonates. Clin Perinatol 2010; 37(4):907–27, xi.

    Google Scholar 

  13. Dawes M, Chowienczyk PJ. Drugs in pregnancy: pharmacokinetics in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2001;15(6):819–26.

    Article  PubMed  CAS  Google Scholar 

  14. Kashuba AD, Dyer JR, Kramer LM, et al. Antiretroviral-drug concentrations in semen: implications for sexual transmission of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 1999;43(8):1817–26.

    PubMed  CAS  Google Scholar 

  15. Krauer B, Krauer F, Hytten FE. Drug disposition and pharmacokinetics in the maternal-placental-fetal unit. Pharmacol Ther. 1980;10(2):301–28.

    Article  PubMed  CAS  Google Scholar 

  16. Aweeka FT, Stek A, Best BM, et al. Lopinavir protein binding in HIV-1-infected pregnant women. HIV Med. 2010;11(4):232–8.

    Article  PubMed  CAS  Google Scholar 

  17. Kiser J, Mawhinney S, Kinzie K, et al. Total and unbound lopinavir/ritonavir pharmacokinetics in a concentration-guided study of HIV-infected women throughout pregnancy and post-partum [abstract no. 946]. In: Programs and abstracts of the 16th conference on retroviruses and opportunistic infections; 2009 Feb 8–11; Montreal, Canada. Alexandria: Foundation for Retrovirology and Human Health, 2010.

  18. Feghali MN, Mattison DR. Clinical therapeutics in pregnancy. J Biomed Biotechnol. 2011;2011:783528.

    Article  PubMed  Google Scholar 

  19. Yankowitz J, Neibyl J. Drug therapy in pregnancy. 3rd ed. Philadelphia: Lippincott William Wilkins; 2001.

    Google Scholar 

  20. Antiretroviral drugs for treating pregnant women and preventing HIV infection in infants: recommendations for a public health approach. 2010 version; p. 1–105. World Health Organization. http://www.who.int/hiv/pub/mtct/antiretroviral2010/en/index.html. Accessed 7 May 2012.

  21. Yuen GJ, Weller S, Pakes GE. A review of the pharmacokinetics of abacavir. Clin Pharmacokinet. 2008;47(6):351–71.

    Article  PubMed  CAS  Google Scholar 

  22. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32.

    Article  PubMed  CAS  Google Scholar 

  23. Hetherington S, Hughes AR, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359(9312):1121–2.

    Article  PubMed  CAS  Google Scholar 

  24. Best BM, Mirochnick M, Capparelli EV, et al. Impact of pregnancy on abacavir pharmacokinetics. AIDS. 2006;20(4):553–60.

    Article  PubMed  CAS  Google Scholar 

  25. Emtricitabine (Emtriva) [package insert]. Forest City: Gilead, Inc.; 2011.

  26. Stek A, Best B, Luo W, et al. Effect of pregnancy on emtricitabine pharmacokinetics. HIV Med. 2012;13(4):226–35.

    PubMed  CAS  Google Scholar 

  27. Davison JM. Kidney function in pregnant women. Am J Kidney Dis. 1987;9(4):248–52.

    PubMed  CAS  Google Scholar 

  28. Lamivudine (Epivir) [package insert]. Forest City: Gilead, Inc.; 2011.

  29. Moodley J, Moodley D, Pillay K, et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring. J Infect Dis. 1998;178(5):1327–33.

    Article  PubMed  CAS  Google Scholar 

  30. Benaboud S, Treluyer JM, Urien S, et al. Pregnancy-related effects on Lamivudine pharmacokinetics in a population study with 228 women. Antimicrob Agents Chemother. 2012;56(2):776–82.

    Article  PubMed  CAS  Google Scholar 

  31. Stavudine (Zerit) [package insert]. Princeton: Bristol-Myers Squibb; 2012.

  32. Wade NA, Unadkat JD, Huang S, et al. Pharmacokinetics and safety of stavudine in HIV-infected pregnant women and their infants: Pediatric AIDS Clinical Trials Group protocol 332. J Infect Dis. 2004;190(12):2167–74.

    Article  PubMed  CAS  Google Scholar 

  33. Tenofovir disoproxil fumurate (Viread) [package insert]. Forest City: Gilead, Inc.; 2012.

  34. Foster C, Lyall H, Olmscheid B, et al. Tenofovir disoproxil fumarate in pregnancy and prevention of mother-to-child transmission of HIV-1: is it time to move on from zidovudine? HIV Med. 2009;10(7):397–406.

    Article  PubMed  CAS  Google Scholar 

  35. Flynn PM, Mirochnick M, Shapiro DE, et al. Pharmacokinetics and safety of single-dose tenofovir disoproxil fumarate and emtricitabine in HIV-1-infected pregnant women and their infants. Antimicrob Agents Chemother. 2011;55(12):5914–22.

    Article  PubMed  CAS  Google Scholar 

  36. Kearney BP, Flaherty JF, Shah J. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet. 2004;43(9):595–612.

    Article  PubMed  CAS  Google Scholar 

  37. Hirt D, Urien S, Ekouevi DK, et al. Population pharmacokinetics of tenofovir in HIV-1-infected pregnant women and their neonates (ANRS 12109). Clin Pharmacol Ther. 2009;85(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  38. Burchett S, Best B, Mirochnick M, et al. Tenofovir pharmacokinetics during pregnancy, at delivery and postpartum [abstract no. 738b]. In: Programs and abstracts of the 14th conference on retroviruses and opportunistic infections; 2007 Feb 25–28; Los Angeles, California. Alexandria: Foundation for Retrovirology and Human Health; 2007.

  39. Benaboud S, Hirt D, Launay O, et al. Pregnancy-related effects on tenofovir pharmacokinetics: a population study with 186 women. Antimicrob Agents Chemother. 2012;56(2):857–62.

    Article  PubMed  CAS  Google Scholar 

  40. Barbier O, Turgeon D, Girard C, et al. 3′-Azido-3′-deoxythimidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab Dispos. 2000;28(5):497–502.

    PubMed  CAS  Google Scholar 

  41. Singlas E, Pioger JC, Taburet AM, et al. Comparative pharmacokinetics of zidovudine (AZT) and its metabolite (G.AZT) in healthy subjects and HIV seropositive patients. Eur J Clin Pharmacol. 1989;36(6):639–40.

    Article  PubMed  CAS  Google Scholar 

  42. Sperling RS, Roboz J, Dische R, et al. Zidovudine pharmacokinetics during pregnancy. Am J Perinatol. 1992;9(4):247–9.

    Article  PubMed  CAS  Google Scholar 

  43. Watts DH, Brown ZA, Tartaglione T, et al. Pharmacokinetic disposition of zidovudine during pregnancy. J Infect Dis. 1991;163(2):226–32.

    Article  PubMed  CAS  Google Scholar 

  44. Ward BA, Gorski JC, Jones DR, et al. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther. 2003;306(1):287–300.

    Article  PubMed  CAS  Google Scholar 

  45. Cespedes MS, Aberg JA. Neuropsychiatric complications of antiretroviral therapy. Drug Saf. 2006;29(10):865–74.

    Article  PubMed  CAS  Google Scholar 

  46. Fundaro C, Genovese O, Rendeli C, et al. Myelomeningocele in a child with intrauterine exposure to efavirenz. AIDS. 2002;16(2):299–300.

    Article  PubMed  Google Scholar 

  47. De Santis M, Carducci B, De Santis L, et al. Periconceptional exposure to efavirenz and neural tube defects. Arch Intern Med. 2002;162(3):355.

    Article  PubMed  Google Scholar 

  48. Cressey TR, Stek A, Capparelli E, et al. Efavirenz pharmacokinetics during the third trimester of pregnancy and postpartum. J Acquir Immune Defic Syndr. 2012;59(3):245–52.

    Article  PubMed  CAS  Google Scholar 

  49. Haas DW, Ribaudo HJ, Kim RB, et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS. 2004;18(18):2391–400.

    PubMed  CAS  Google Scholar 

  50. Chantarangsu S, Cressey TR, Mahasirimongkol S, et al. Influence of CYP2B6 polymorphisms on the persistence of plasma nevirapine concentrations following a single intra-partum dose for the prevention of mother to child transmission in HIV-infected Thai women. J Antimicrob Chemother. 2009;64(6):1265–73.

    Article  PubMed  CAS  Google Scholar 

  51. Nevirapine (Viramune) [package insert]. Ridgefield: Boehringer Ingelheim Pharmaceuticals, Inc.; 2011.

  52. Mirochnick M, Fenton T, Gagnier P, et al. Pharmacokinetics of nevirapine in human immunodeficiency virus type 1-infected pregnant women and their neonates: Pediatric AIDS Clinical Trials Group Protocol 250 Team. J Infect Dis. 1998;178(2):368–74.

    Article  PubMed  CAS  Google Scholar 

  53. Musoke P, Guay LA, Bagenda D, et al. A phase I/II study of the safety and pharmacokinetics of nevirapine in HIV-1-infected pregnant Ugandan women and their neonates (HIVNET 006). AIDS. 1999;13(4):479–86.

    Article  PubMed  CAS  Google Scholar 

  54. Eshleman SH, Church JD, Chen S, et al. Comparison of HIV-1 mother-to-child transmission after single-dose nevirapine prophylaxis among African women with subtypes A, C, and D. J Acquir Immune Defic Syndr. 2006;42(4):518–21.

    Article  PubMed  Google Scholar 

  55. Jackson JB, Becker-Pergola G, Guay LA, et al. Identification of the K103N resistance mutation in Ugandan women receiving nevirapine to prevent HIV-1 vertical transmission. AIDS. 2000;14(11):F111–5.

    Article  PubMed  CAS  Google Scholar 

  56. Jourdain G, Ngo-Giang-Huong N, Le Coeur S, et al. Intrapartum exposure to nevirapine and subsequent maternal responses to nevirapine-based antiretroviral therapy. N Engl J Med. 2004;351(3):229–40.

    Article  PubMed  CAS  Google Scholar 

  57. Lockman S, Shapiro RL, Smeaton LM, et al. Response to antiretroviral therapy after a single, peripartum dose of nevirapine. N Engl J Med. 2007;356(2):135–47.

    Article  PubMed  CAS  Google Scholar 

  58. Cressey TR, Jourdain G, Lallemant MJ, et al. Persistence of nevirapine exposure during the postpartum period after intrapartum single-dose nevirapine in addition to zidovudine prophylaxis for the prevention of mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr. 2005;38(3):283–8.

    PubMed  CAS  Google Scholar 

  59. McIntyre JA, Hopley M, Moodley D, et al. Efficacy of short-course AZT plus 3TC to reduce nevirapine resistance in the prevention of mother-to-child HIV transmission: a randomized clinical trial. PLoS Med. 2009;6(10):e1000172.

    Article  PubMed  CAS  Google Scholar 

  60. Van Dyke RB, Ngo-Giang-Huong N, Shapiro DE, et al. A comparison of 3 regimens to prevent nevirapine resistance mutations in HIV-infected pregnant women receiving a single intrapartum dose of nevirapine. Clin Infect Dis. 2012;54(2):285–93.

    Article  PubMed  CAS  Google Scholar 

  61. Capparelli EV, Aweeka F, Hitti J, et al. Chronic administration of nevirapine during pregnancy: impact of pregnancy on pharmacokinetics. HIV Med. 2008;9(4):214–20.

    Article  PubMed  CAS  Google Scholar 

  62. Lamorde M, Byakika-Kibwika P, Okaba-Kayom V, et al. Suboptimal nevirapine steady-state pharmacokinetics during intrapartum compared with postpartum in HIV-1-seropositive Ugandan women. J Acquir Immune Defic Syndr. 2010;55(3):345–50.

    Article  PubMed  CAS  Google Scholar 

  63. Etravirine (Intelence) [package insert]. Raritan: Tibotec, Inc.; 2011.

  64. Furco A, Gosrani B, Nicholas S, et al. Successful use of darunavir, etravirine, enfuvirtide and tenofovir/emtricitabine in pregnant woman with multiclass HIV resistance. AIDS. 2009;23(3):434–5.

    Article  PubMed  Google Scholar 

  65. Izurieta P, Kakuda TN, Feys C, et al. Safety and pharmacokinetics of etravirine in pregnant HIV-1-infected women. HIV Med. 2011;12(4):257–8.

    Article  PubMed  CAS  Google Scholar 

  66. Rilpivirine (Edurant) [package insert]. Raritan: Tibotec, Inc.; 2011.

  67. Barry M, Gibbons S, Back D, et al. Protease inhibitors in patients with HIV disease: clinically important pharmacokinetic considerations. Clin Pharmacokinet. 1997;32(3):194–209.

    Article  PubMed  CAS  Google Scholar 

  68. Atazanavir (Reyataz) [package insert]. Princeton: Bristol Myers Squibb; 2012.

  69. King JR, Wynn H, Brundage R, et al. Pharmacokinetic enhancement of protease inhibitor therapy. Clin Pharmacokinet. 2004;43(5):291–310.

    Article  PubMed  CAS  Google Scholar 

  70. Tracy TS, Venkataramanan R, Glover DD, et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.

    Article  PubMed  CAS  Google Scholar 

  71. Hebert MF, Easterling TR, Kirby B, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington specialized center of research study. Clin Pharmacol Ther. 2008;84(2):248–53.

    Article  PubMed  CAS  Google Scholar 

  72. Ripamonti D, Cattaneo D, Maggiolo F, et al. Atazanavir plus low-dose ritonavir in pregnancy: pharmacokinetics and placental transfer. AIDS. 2007;21(18):2409–15.

    Article  PubMed  CAS  Google Scholar 

  73. Conradie F, Zorrilla C, Josipovic D, et al. Safety and exposure of once-daily ritonavir-boosted atazanavir in HIV-infected pregnant women. HIV Med. 2011;12(9):570–9.

    Article  PubMed  CAS  Google Scholar 

  74. Mirochnick M, Best BM, Stek AM, et al. Atazanavir pharmacokinetics with and without tenofovir during pregnancy. J Acquir Immune Defic Syndr. 2011;56(5):412–9.

    Article  PubMed  CAS  Google Scholar 

  75. Mirochnick M, Stek A, Capparelli EV, et al. Pharmacokinetics of increased dose of atazanavir with and without tenofovir during pregnancy. In: Programs and abstracts of the 12th international workshop on clinical pharmacology of HIV therapy; 2011 Apr 13–15; Miami, FL. Utrecht: Virology Education B.V.; 2011.

  76. Pacanowski J, Bollens D, Poirier JM, et al. Efficacy of darunavir despite low plasma trough levels during late pregnancy in an HIV-hepatitis C virus-infected patient. AIDS. 2009;23(14):1923–4.

    Article  PubMed  Google Scholar 

  77. Capparelli E. Pharmacokinetics of darunavir once or twice daily during and after pregnancy [abstract no. P_72]. In: Programs and abstracts of the 3rd international workshop on HIV pediatrics; 2011 Jul 15–16; Rome, Italy. Utrecht: Virology Education B.V.; 2011.

  78. Capparelli E, Stek A, BM B, et al. Boosted fosamprenavir pharmacokinetics during pregnancy [abstract no. 908]. In: Programs and abstracts of the 17th conference on retroviruses and opportunistic infections; 2010 Feb 16–19; San Francisco, CA. Alexandria: Foundation for Retrovirology and Human Health; 2010.

  79. Cespedes M, Ford S, Pakes G, et al. Pharmacokinetics, cord blood concentrations, and tolerability of boosted fosamprenavir (FPV) in pregnancy [abstract no. TUPE278]. In: 6th IAS conference on HIV pathogenesis, treatment and prevention; 2011 Jul 17–20; Rome.

  80. Boyd MA, Srasuebkul P, Khongphattanayothin M, et al. Boosted versus unboosted indinavir with zidovudine and lamivudine in nucleoside pre-treated patients: a randomized, open-label trial with 112 weeks of follow-up (HIV-NAT 005). Antivir Ther. 2006;11(2):223–32.

    PubMed  CAS  Google Scholar 

  81. Cressey TR, Leenasirimakul P, Jourdain G, et al. Low-doses of indinavir boosted with ritonavir in HIV-infected Thai patients: pharmacokinetics, efficacy and tolerability. J Antimicrob Chemother. 2005;55(6):1041–4.

    Article  PubMed  CAS  Google Scholar 

  82. Hayashi S, Beckerman K, Homma M, et al. Pharmacokinetics of indinavir in HIV-positive pregnant women. AIDS. 2000;14(8):1061–2.

    Article  PubMed  CAS  Google Scholar 

  83. Unadkat JD, Wara DW, Hughes MD, et al. Pharmacokinetics and safety of indinavir in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2007;51(2):783–6.

    Article  PubMed  CAS  Google Scholar 

  84. Ghosn J, De Montgolfier I, Cornelie C, et al. Antiretroviral therapy with a twice-daily regimen containing 400 milligrams of indinavir and 100 milligrams of ritonavir in human immunodeficiency virus type 1-infected women during pregnancy. Antimicrob Agents Chemother. 2008;52(4):1542–4.

    Article  PubMed  CAS  Google Scholar 

  85. Cressey TR, BM B, Achalapong J, et al. Effect of pregnancy on pharmacokinetics of indinavir boosted ritonavir. In: Programs and abstracts of the 13th international workshop on clinical pharmacology of HIV therapy; 2012 Apr 16–18; Barcelona, Spain. Utrecht: Virology Education B.V.; 2012.

  86. Stek AM, Mirochnick M, Capparelli E, et al. Reduced lopinavir exposure during pregnancy. AIDS. 2006;20(15):1931–9.

    Article  PubMed  CAS  Google Scholar 

  87. Cressey TR, Jourdain G, Rawangban B, et al. Pharmacokinetics and virologic response of zidovudine/lopinavir/ritonavir initiated during the third trimester of pregnancy. AIDS. 2010;24(14):2193–200.

    Article  PubMed  CAS  Google Scholar 

  88. Lyons F, Lechelt M, De Ruiter A. Steady-state lopinavir levels in third trimester of pregnancy. AIDS. 2007;21(8):1053–4.

    Article  PubMed  CAS  Google Scholar 

  89. Manavi K, McDonald A, Al-Sharqui A. Plasma lopinavir trough levels in a group of pregnant women on lopinavir, ritonavir, zidovudine, and lamivudine. AIDS 2007; 21(5):643–5. Epub 2007/02/23.

    Google Scholar 

  90. Mirochnick M, Best BM, Stek AM, et al. Lopinavir exposure with an increased dose during pregnancy. J Acquir Immune Defic Syndr. 2008;49(5):485–91.

    Article  PubMed  Google Scholar 

  91. Cressey TR, Van Dyke R, Jourdain G, et al. Early postpartum pharmacokinetics of lopinavir initiated intrapartum in Thai women. Antimicrob Agents Chemother. 2009;53(5):2189–91.

    Article  PubMed  CAS  Google Scholar 

  92. Best BM, Stek AM, Mirochnick M, et al. Lopinavir tablet pharmacokinetics with an increased dose during pregnancy. J Acquir Immune Defic Syndr. 2010;54(4):381–8.

    PubMed  CAS  Google Scholar 

  93. Ramautarsing RA, van der Lugt J, Gorowara M, et al. Thai HIV-1-infected women do not require a dose increase of lopinavir/ritonavir during the third trimester of pregnancy. AIDS. 2011;25(10):1299–303.

    Article  PubMed  CAS  Google Scholar 

  94. van der Leur MR, Burger DM, la Porte CJ, et al. A retrospective TDM database analysis of interpatient variability in the pharmacokinetics of lopinavir in HIV-infected adults. Ther Drug Monit. 2006;28(5):650–3.

    Article  PubMed  CAS  Google Scholar 

  95. Bouillon-Pichault M, Jullien V, Piketty C, et al. A population analysis of weight-related differences in lopinavir pharmacokinetics and possible consequences for protease inhibitor-naive and -experienced patients. Antivir Ther. 2009;14(7):923–9.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang KE, Wu E, Patick AK, et al. Circulating metabolites of the human immunodeficiency virus protease inhibitor nelfinavir in humans: structural identification, levels in plasma, and antiviral activities. Antimicrob Agents Chemother. 2001;45(4):1086–93.

    Article  PubMed  CAS  Google Scholar 

  97. Kosel BW, Beckerman KP, Hayashi S, et al. Pharmacokinetics of nelfinavir and indinavir in HIV-1-infected pregnant women. AIDS. 2003;17(8):1195–9.

    Article  PubMed  CAS  Google Scholar 

  98. Bryson YJ, Mirochnick M, Stek A, et al. Pharmacokinetics and safety of nelfinavir when used in combination with zidovudine and lamivudine in HIV-infected pregnant women: Pediatric AIDS Clinical Trials Group (PACTG) Protocol 353. HIV Clin Trials. 2008;9(2):115–25.

    Article  PubMed  CAS  Google Scholar 

  99. Villani P, Floridia M, Pirillo MF, et al. Pharmacokinetics of nelfinavir in HIV-1-infected pregnant and nonpregnant women. Br J Clin Pharmacol. 2006;62(3):309–15.

    Article  PubMed  CAS  Google Scholar 

  100. Read JS, Best BM, Stek AM, et al. Pharmacokinetics of new 625 mg nelfinavir formulation during pregnancy and postpartum. HIV Med. 2008;9(10):875–82.

    PubMed  CAS  Google Scholar 

  101. Acosta EP, Zorrilla C, Van Dyke R, et al. Pharmacokinetics of saquinavir-SGC in HIV-infected pregnant women. HIV Clin Trials. 2001;2(6):460–5.

    Article  PubMed  CAS  Google Scholar 

  102. Acosta EP, Bardeguez A, Zorrilla CD, et al. Pharmacokinetics of saquinavir plus low-dose ritonavir in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2004;48(2):430–6.

    Article  PubMed  CAS  Google Scholar 

  103. Martinez-Rebollar M, Lonca M, Perez I, et al. Pharmacokinetic study of saquinavir 500 mg plus ritonavir (1000/100 mg twice a day) in HIV-positive pregnant women. Ther Drug Monit. 2011;33(6):772–7.

    Article  PubMed  CAS  Google Scholar 

  104. von Hentig N, Nisius G, Lennemann T, et al. Pharmacokinetics, safety and efficacy of saquinavir/ritonavir 1,000/100 mg twice daily as HIV type-1 therapy and transmission prophylaxis in pregnancy. Antivir Ther. 2008;13(8):1039–46.

    Google Scholar 

  105. van der Lugt J, Colbers A, Molto J, et al. The pharmacokinetics, safety and efficacy of boosted saquinavir tablets in HIV type-1-infected pregnant women. Antivir Ther. 2009;14(3):443–50.

    PubMed  Google Scholar 

  106. King JR, Acosta EP. Tipranavir: a novel nonpeptidic protease inhibitor of HIV. Clin Pharmacokinet. 2006;45(7):665–82.

    Article  PubMed  CAS  Google Scholar 

  107. Weizsaecker K, Kurowski M, Hoffmeister B, et al. Pharmacokinetic profile in late pregnancy and cord blood concentration of tipranavir and enfuvirtide. Int J STD AIDS. 2011;22(5):294–5.

    Article  PubMed  CAS  Google Scholar 

  108. Raltegravir (Isentress) [package insert]. Whitehouse Station: Merck Sharp & Dohme Corp.; 2011.

  109. Best BM, Capparelli E, Stek A. Raltegravir pharmacokinetics during pregnancy [abstract no. H-1668a]. In: Programs and abstracts of the 50th interscience conference on antimicrobial agents and chemotherapy; 2010 Sep 12–15; Boston, MA. Washington, DC: American Society for Microbiology Washington, DC; 2010.

  110. Colbers A, Molto J, Ivanovic J. A comparison of the pharmacokinetics of raltegravir during pregnancy and post-partum [abstract no. P-18]. In: Programs and abstracts of the 12th international workshop on clinical pharmacology of HIV therapy; 2011 Apr 13–15; Miami, Florida. Utrecht: Virology Education B.V.; 2011.

  111. Jaworsky D, Thompson C, Yudin MH, et al. Use of newer antiretroviral agents, darunavir and etravirine with or without raltegravir, in pregnancy: a report of two cases. Antivir Ther. 2010;15(4):677–80.

    Article  PubMed  CAS  Google Scholar 

  112. Pinnetti C, Baroncelli S, Villani P, et al. Rapid HIV-RNA decline following addition of raltegravir and tenofovir to ongoing highly active antiretroviral therapy in a woman presenting with high-level HIV viraemia at week 38 of pregnancy. J Antimicrob Chemother. 2010;65(9):2050–2.

    Article  PubMed  CAS  Google Scholar 

  113. Maraviroc (Selzentry) [package insert]. Freiburg: Pfizer Manufacturing Deutschland GmbH; 2010.

  114. Winters MA, Van Rompay KK, Kashuba AD, et al. Maternal-fetal pharmacokinetics and dynamics of a single intrapartum dose of maraviroc in rhesus macaques. Antimicrob Agents Chemother. 2010;54(10):4059–63.

    Article  PubMed  CAS  Google Scholar 

  115. Enfuvirtide (Fuzeon) [package insert]. South San Francisco: Genentech USA, Inc.; 2011.

  116. Brennan-Benson P, Pakianathan M, Rice P, et al. Enfurvitide prevents vertical transmission of multidrug-resistant HIV-1 in pregnancy but does not cross the placenta. AIDS. 2006;20(2):297–9.

    Article  PubMed  CAS  Google Scholar 

  117. Nakamura Y, Ikeda S, Furukawa T, et al. Function of P-glycoprotein expressed in placenta and mole. Biochem Biophys Res Commun. 1997;235(3):849–53.

    Article  PubMed  CAS  Google Scholar 

  118. Molsa M, Heikkinen T, Hakkola J, et al. Functional role of P-glycoprotein in the human blood-placental barrier. Clin Pharmacol Ther. 2005;78(2):123–31.

    Article  PubMed  CAS  Google Scholar 

  119. Shapiro RL, Ndung’u T, Lockman S, et al. Highly active antiretroviral therapy started during pregnancy or postpartum suppresses HIV-1 RNA, but not DNA, in breast milk. J Infect Dis. 2005;192(5):713–9.

    Article  PubMed  CAS  Google Scholar 

  120. Zeh C, Weidle PJ, Nafisa L, et al. HIV-1 drug resistance emergence among breastfeeding infants born to HIV-infected mothers during a single-arm trial of triple-antiretroviral prophylaxis for prevention of mother-to-child transmission: a secondary analysis. PLoS Med. 2011;8(3):e1000430.

    Article  PubMed  Google Scholar 

  121. Breitzka RL, Sandritter TL, Hatzopoulos FK. Principles of drug transfer into breast milk and drug disposition in the nursing infant. J Hum Lact. 1997;13(2):155–8.

    Article  PubMed  CAS  Google Scholar 

  122. Mirochnick M, Thomas T, Capparelli E, et al. Antiretroviral concentrations in breast-feeding infants of mothers receiving highly active antiretroviral therapy. Antimicrob Agents Chemother. 2009;53(3):1170–6.

    Article  PubMed  CAS  Google Scholar 

  123. Schneider S, Peltier A, Gras A, et al. Efavirenz in human breast milk, mothers’, and newborns’ plasma. J Acquir Immune Defic Syndr. 2008;48(4):450–4.

    Article  PubMed  CAS  Google Scholar 

  124. Spencer L, Neely M, Mordwinkin N. Intensive pharmacokinetics of zidovudine, lamivudine, and atazanavir and HIV-1 viral load in breast milk and plasma in HIV + women receiving HAART. In: Programs and abstracts of the 16th conference on retroviruses and opportunistic infections; 2009 Feb 8–11; Montreal, CA. Alexandria: Foundation for Retrovirology and Human Health; 2009.

  125. Weidle PJ, Zeh C, Martin A, et al. Nelfinavir and its active metabolite, hydroxy-t-butylamidenelfinavir (M8), are transferred in small quantities to breast milk and do not reach biologically significant concentrations in breast-feeding infants whose mothers are taking nelfinavir. Antimicrob Agents Chemother. 2011;55(11):5168–71.

    Article  PubMed  CAS  Google Scholar 

  126. Kromdijk W, Mulder JW, Rosing H, et al. Use of dried blood spots for the determination of plasma concentrations of nevirapine and efavirenz. J Antimicrob Chemother. 2012;67(5):1211–6.

    Article  PubMed  CAS  Google Scholar 

  127. Azoulay S, Nevers MC, Creminon C, et al. An enzyme immunoassay for the quantification of plasma and intracellular lopinavir in HIV-infected patients. J Immunol Methods. 2004;295(1–2):37–48.

    Article  PubMed  CAS  Google Scholar 

  128. Roucairol C, Azoulay S, Nevers MC, et al. Quantitative immunoassay to measure plasma and intracellular atazanavir levels: analysis of drug accumulation in cultured T cells. Antimicrob Agents Chemother. 2007;51(2):405–11.

    Article  PubMed  CAS  Google Scholar 

  129. Cressey TR, Nangola S, Tawon Y, et al. Immunochromatographic strip test for rapid detection of nevirapine in plasma samples from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2007;51(9):3361–3.

    Article  PubMed  CAS  Google Scholar 

  130. Chappuy H, Treluyer JM, Jullien V, et al. Maternal-fetal transfer and amniotic fluid accumulation of nucleoside analogue reverse transcriptase inhibitors in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2004;48(11):4332–6.

    Article  PubMed  CAS  Google Scholar 

  131. Gingelmaier A, Kurowski M, Kastner R, et al. Placental transfer and pharmacokinetics of lopinavir and other protease inhibitors in combination with nevirapine at delivery. AIDS. 2006;20(13):1737–43.

    Article  PubMed  CAS  Google Scholar 

  132. WHO HIV/AIDS Programme. Technical update on treatment optimization. Use of efavirenz during pregnancy: a public health perspective. Geneva: WHO; 2012 Jun. http://www.who.int/hiv/pub/treatment2/efavirenz/en/index.html. Accessed 26 Jul 2012.

Download references

Acknowledgments

Jennifer R. King has received salary support from grants IK23AI0074390-01 and U01-AI41089 from the National Institute of Allergy and Infectious Diseases. No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckoreelall, K., Cressey, T.R. & King, J.R. Pharmacokinetic Optimization of Antiretroviral Therapy in Pregnancy. Clin Pharmacokinet 51, 639–659 (2012). https://doi.org/10.1007/s40262-012-0002-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-012-0002-0

Keywords

Navigation