Skip to main content
Log in

Therapeutic Potential of Targeting Interleukin 5 in Asthma

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches have identified new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach resulted in the development of biologics targeted at inhibition of interleukin (IL)-4, IL-5 and IL-13. However, early clinical trials with these biologics in patients with asthma were, for the most part, disappointing even though they were highly effective in animal models of asthma. It is becoming apparent that significant clinical effects with anti-cytokine-based therapies are more likely in carefully selected patient populations that take asthma phenotypes into account. The development of discriminatory biomarkers and genetic profiling may aid identification of such patients with asthma. This review summarises the current evidence, demonstrating the effectiveness or otherwise of the targeting of IL-5 in patients with asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anandan C, Nurmatov U, van Schayck OC, Sheikh A. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy. 2010;65:152–67.

    Article  PubMed  CAS  Google Scholar 

  2. Barnes PJ. Pathophysiology of allergic inflammation. Immunol Rev. 2011;242:31–50.

    Article  PubMed  CAS  Google Scholar 

  3. Holgate ST. A look at the pathogenesis of asthma: the need for a change in direction. Discov Med. 2010;9:439–47.

    PubMed  Google Scholar 

  4. Pelaia G, Vatrella A, Maselli R. The potential of biologics for the treatment of asthma. Nat Rev Drug Discov. 2012;11:958–72.

    Article  PubMed  CAS  Google Scholar 

  5. Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J. 2005;25:552–63.

    Article  PubMed  CAS  Google Scholar 

  6. Holtzman MJ. Drug development for asthma. Am J Resp Cell Mol Biol. 2003;29:163–71.

    Article  CAS  Google Scholar 

  7. Berger WE. New approaches to managing asthma: a US perspective. Ther Clin Risk Manag. 2008;4:363–79.

    PubMed  CAS  Google Scholar 

  8. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372:1107–19.

    Article  PubMed  Google Scholar 

  9. Turner S, Paton J, Higgins B, Douglas G. British guidelines on the management of asthma: what’s new for 2011? Thorax. 2011;66:1104–5.

    Article  PubMed  Google Scholar 

  10. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323:1033–9.

    Article  PubMed  CAS  Google Scholar 

  11. Nissim Ben Efraim AH, Levi-Schaffer F. Tissue remodeling and angiogenesis in asthma: the role of the eosinophil. Ther Adv Respir Dis. 2008;2:163–71.

    Article  PubMed  CAS  Google Scholar 

  12. Walsh GM. Advances in the immunobiology of eosinophils and their role in disease. Crit Rev Clin Lab Sci. 1999;36:453–96.

    Article  PubMed  CAS  Google Scholar 

  13. O’Byrne PM. The demise of anti-IL-5 for asthma, or not. Am J Respir Crit Care Med. 2007;176:1059–60.

    Article  PubMed  Google Scholar 

  14. Corren J. Inhibition of interleukin-5 for the treatment of eosinophilic diseases. Discovery Med. 2012;13:305–12.

    Google Scholar 

  15. Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson D. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003;167:199.

    Article  PubMed  Google Scholar 

  16. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Conner BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R, Hansel TT, Holgate ST, Sterk PJ, Barnes PJ. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness and the late asthmatic response. Lancet. 2000;356:2144–8.

    Article  PubMed  CAS  Google Scholar 

  17. Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L, Robinson D, Wenzel S, Busse W, Hansel TT, Barnes NC, International Mepolizumab Study Group. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007;176:1062–71.

    Article  PubMed  CAS  Google Scholar 

  18. Walsh GM. Mepolizumab and eosinophil-mediated disease. Curr Med Chem. 2009;16:4774–8.

    Article  PubMed  CAS  Google Scholar 

  19. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.

    Article  PubMed  CAS  Google Scholar 

  20. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave FE, O’Byrne PM. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360:985–93.

    Article  PubMed  CAS  Google Scholar 

  21. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, Ortega H, Chanez P. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–9.

    Article  PubMed  CAS  Google Scholar 

  22. Cook WJ, Walter LJ, Murgolo NJ, Chou CC, Petro M, Zavodny PJ, Narula SK, Ramanathan L, Trotta PP, Nagabhushan TL. Structure and humanization of a rat monoclonal Fab to human interleukin-5. Protein Eng. 1995;97:623–8.

    Google Scholar 

  23. Egan RW, Athwal D, Bodmer MW, Carter JM, Chapman RW, Chou CC, Cox MA, Emtage JS, Fernandez X, Genatt N, Indelicato SR, Jenh CH, Kreutner W, Kung TT, Mauser PJ, Minnicozzi M, Murgolo NJ, Narula SK, Petro ME, Schilling A, Sehring S, Stelts D, Stephens S, Taremi SS, Zurcher J. Effect of Sch 55700, a humanized monoclonal antibody to human interleukin-5, on eosinophilic responses and bronchial hyperreactivity. Arzneimittelforschung. 1999;49(9):779–90.

    PubMed  CAS  Google Scholar 

  24. Walsh GM. Reslizumab, a humanized monoclonal anti-IL-5 antibody for the treatment of eosinophil-mediated inflammatory conditions. Curr Opin Mol Ther. 2009;11:329–36.

    PubMed  CAS  Google Scholar 

  25. Kips JC, O’Conner BJ, Langley SJ, Woodcock A, Kerstjens HAM, Postma DS, Danzig M, Cuss F, Pauwels RA. Effect of SCH55700, a humanised anti-human interleukin-5 antibody in severe persistent asthma: a pilot study. Am J Resp Crit Care Med. 2003;167:1655–9.

    Article  PubMed  Google Scholar 

  26. Bateman ND, Shahi A, Feeley KM, Woolford TJ. Activated eosinophils in nasal polyps: a comparison of asthmatic and non-asthmatic patients. Clin Otolaryngol. 2005;30:221–5.

    Article  PubMed  CAS  Google Scholar 

  27. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, Wilkins HJ, Henkel T, Nair P, for the Res-5-0010 Study Group. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184:1125–32.

    Article  PubMed  CAS  Google Scholar 

  28. Wechsler ME, Fulkerson PC, Bochner BS, Gauvreau GM, Gleich GJ, Henkel T, Kolbeck R, Mathur SK, Ortega H, Patel J, Prussin C, Renzi P, Rothenberg ME, Roufosse F, Simon D, Simon HU, Wardlaw A, Weller PF, Klion AD. Novel targeted therapies for eosinophilic disorders. J Allergy Clin Immunol. 2012;130:563–71.

    Article  PubMed  CAS  Google Scholar 

  29. Walsh GM. Profile of reslizumab in eosinophilic disease and its potential in the treatment of poorly controlled eosinophilic asthma. Biologics. 2013;7:7–11.

    PubMed  CAS  Google Scholar 

  30. Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK, Damschroder MM, Reed JL, Woods R, Dall’acqua WW, Stephens GL, Erjefalt JS, Bjermer L, Humbles AA, Gossage D, Wu H, Kiener PA, Spitalny GL, Mackay CR, Molfino NA, Coyle AJ. MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol. 2010;125:1344–53.

    Article  PubMed  CAS  Google Scholar 

  31. Walsh GM. Eosinophil apoptosis and clearance in asthma. J Cell Death. 2013;6:17–25.

    Article  Google Scholar 

  32. Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R, Coyle AJ, Koike M, Spitalny GL, Kiener PA, Geba GP, Molfino NA. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010;125:1237–44.

    Article  PubMed  CAS  Google Scholar 

  33. Robinson DS. Mepolizumab for severe eosinophilic asthma. Expert Rev Respir Med. 2013;7:13–7.

    Article  PubMed  CAS  Google Scholar 

  34. Holgate ST. Innate and adaptive immune responses in asthma. Nat Med. 2012;18:673–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The author received no assistance in the preparation of this manuscript and has not served as a consultant or has any other financial interests in association with any of the therapies discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry M. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, G.M. Therapeutic Potential of Targeting Interleukin 5 in Asthma. BioDrugs 27, 559–563 (2013). https://doi.org/10.1007/s40259-013-0047-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-013-0047-0

Keywords

Navigation