Skip to main content
Log in

Orale Toleranz bei der Maus als Lehrstück für orale Immuntherapie beim Menschen?

Oral tolerance in mice as a model of human immunotherapy?

  • Übersicht
  • Review Article
  • Published:
Allergo Journal Aims and scope Submit manuscript

Zusammenfassung

Im Mausmodell bewirkt die orale Gabe von Antigen eine systemische Immunsuppression, die als orale Toleranz bezeichnet wird. Die Prozesse, die der Entstehung und Aufrechterhaltung der oralen Toleranz zugrunde liegen, sind in ihren Grundzügen verstanden. Eine Schlüsselrolle spielen hierbei durch die Antigengabe induzierte regulatorische T-Zellen. Derzeit ist unklar, inwieweit Nahrungsmittelallergien als ein Versagen vergleichbarer Prozesse beim Menschen aufgefasst werden dürfen und inwiefern durch orale Immuntherapien bewirkte Prozesse der oralen Toleranzinduktion im Tiermodell ähneln.

Summary

In mice, uptake of antigen via the oral route induces a systemic immunosuppression, known as oral tolerance. The main features of oral tolerance induction are mechanistically well understood and we know that induced regulatory T cells play a key role. Yet, at present it is unclear to what extent human food allergy shall be considered as failure of oral tolerance induction and if oral immunotherapy in humans triggers comparable immunosuppressive pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

DC:

Dendritische Zellen

IgE:

Immunglobulin E

iTreg:

Induzierte regulatorische T-Zellen

MadCAM-1:

Mucosal addressin cell adhesion molecule-1

mLN:

Mesenterische Lymphknoten

nTreg:

Natürliche regulatorische T-Zellen

TCR:

T-Zell-Rezeptor

Treg:

Regulatorische T-Zellen

Literatur

  1. Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol 2012; 5: 232–9

    Article  PubMed  CAS  Google Scholar 

  2. Faria AM, Weiner HL. Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol 2006; 13: 143–57

    Article  PubMed  CAS  Google Scholar 

  3. Takayama N, Igarashi O, Kweon MN, Kiyono H. Regulatory role of Peyer‘s patches for the inhibition of OVA-induced allergic diarrhea. Clin Immunol 2007; 123: 199–208

    Article  PubMed  CAS  Google Scholar 

  4. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, Sparwasser T, Forster R, Pabst O. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 2011; 34: 237–46

    Article  PubMed  CAS  Google Scholar 

  5. Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA. Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 2005; 115: 1923–33

    Article  PubMed  CAS  Google Scholar 

  6. Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 2008; 29: 114–26

    Article  PubMed  CAS  Google Scholar 

  7. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G, Forster R, Pabst O. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 2006; 203: 519–27

    Article  PubMed  CAS  Google Scholar 

  8. Brandt EB, Strait RT, Hershko D, Wang Q, Muntel EE, Scribner TA, Zimmermann N, Finkelman FD, Rothenberg ME. Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest 2003; 112: 1666–77

    PubMed  CAS  Google Scholar 

  9. Burggraf M, Nakajima-Adachi H, Hachimura S, Ilchmann A, Pemberton AD, Kiyono H, Vieths S, Toda M. Oral tolerance induction does not resolve gastrointestinal inflammation in a mouse model of food allergy. Mol Nutr Food Res 2011; 55: 1475–83

    Article  PubMed  CAS  Google Scholar 

  10. Ismail IH, Tang ML. Oral immunotherapy for the treatment of food allergy. Isr Med Assoc J 2012; 14: 63–9

    PubMed  Google Scholar 

  11. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011; 478: 250–4

    Article  PubMed  CAS  Google Scholar 

  12. Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, Floess S, Huehn J, Oh S, Li MO, Niec RE, Rudensky AY, Dustin ML, Littman DR, Lafaille JJ. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012; 209: 1723–42

    Article  PubMed  CAS  Google Scholar 

  13. Varshney P, Jones SM, Scurlock AM, Perry TT, Kemper A, Steele P, Hiegel A, Kamilaris J, Carlisle S, Yue X, Kulis M, Pons L, Vickery B, Burks AW. A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol 2011; 127: 654–60

    Article  PubMed  CAS  Google Scholar 

  14. Nurmatov U, Venderbosch I, Devereux G, Simons FE, Sheikh A. Allergen-specific oral immunotherapy for peanut allergy. Cochrane Database Syst Rev 2012; 9: CD009014

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Pabst.

Additional information

Interessenkonflikt

Der Autor erklärt, dass kein Interessenkonflikt besteht.

*You can find an authorised Englisch version of this article online at http://link.springer.com

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabst, O. Orale Toleranz bei der Maus als Lehrstück für orale Immuntherapie beim Menschen?. Allergo J 22, 312–316 (2013). https://doi.org/10.1007/s15007-013-0221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15007-013-0221-1

Schlüsselwörter

Key words

Navigation