Skip to main content
Log in

Bayesian modeling of bathtub shaped hazard rate using various Weibull extensions and related issues of model selection

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

Bathtub shape is one of the most important behaviors of the hazard rate function that is quite common in lifetime data analysis. Such shapes are actually the combination of three different shapes and, as such, there have been several proposals to model such behavior. One such proposal is to combine at most three different distributions, often the Weibull or some similar model, separately for decreasing, constant, and increasing shapes of the hazard rate. Sometimes combination of two different models may also result in the required bathtub shape. The other proposal includes generalizing or modifying the two-parameter distribution by adding an extra parameter into it. It is often seen that the first proposal is quite cumbersome whereas the second fails to capture some important aspects of the data. The present work considers two recent generalizations/modifications of the two-parameter Weibull model, namely the Weibull extension and the modified Weibull models, and proposes mixing the two families separately with the three-parameter Weibull distribution in order to see if the mixing results in some real benefit though at the cost of too many parameters. The paper finally considers the complete Bayes analysis of the proposed models using Markov chain Monte Carlo simulation and compares them with both Weibull extension and the modified Weibull models in a Bayesian framework. It is observed that the mixture models offer drastic improvement over the individual models not only in terms of hazard rate but also in terms of overall performance. The results are illustrated with the help of a real data based example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Similar content being viewed by others

References

  • Aarset, M.V. (1987). How to identify bathtub hazard rate. IEEE Trans. Reliab., R-36, 106–108.

    Article  Google Scholar 

  • Bebbington, M., Lai, C.D. and Zitikis, R. (2006). Changing phases of human life expectancy: can we find them mathematically? In Proceedings of the UNU–WIDER Conference on Advancing Health Equity. United Nations University–World Institute for Development Economics Research (UNU–WIDER), Helsinki, September.

  • Bebbington, M., Lai, C.D. and Zitikis, R. (2007a). Modeling human mortality using mixtures of bathtub shaped failure distributions. J. Theor. Biol., 245, 528–538.

    Article  MathSciNet  Google Scholar 

  • Bebbington, M., Lai, C.D. and Zitikis, R. (2007b). A flexible Weibull extension. Reliab. Eng. Syst. Safety, 92, 719–726.

    Article  Google Scholar 

  • Bebbington, M., Lai, C.D. and Zitikis, R. (2008). Reduction in mean residual life in the presence of a constant competing risk. Appl. Stoch. Models Bus. Ind., 24, 51–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J.O. and Pericchi, L.R. (1996). The intrinsic Bayes factor for model selection and prediction. J. Am. Stat. Assoc., 91, 109–122.

    Article  MathSciNet  MATH  Google Scholar 

  • Block, H. W. and Joe, H. (1997). Tail behavior of the failure rate functions of mixtures. Lifetime Data Anal., 3, 269–288.

    Article  MATH  Google Scholar 

  • Block, H.W. and Savits, T.H. (1997). Burn-in. Stat. Sci., 12, 1–19.

    Article  Google Scholar 

  • Block, H.W., Jong, Y.K. and Savits, T.H. (1999). Bathtub functions and burn-in. Probab. Eng. Inform. Sci., 13, 497–507.

    Article  MathSciNet  MATH  Google Scholar 

  • Celeux, G. and Diebolt, J. (1992). A stochastic approximation type EM algorithm for the mixture problem. Stochastics and Stochastic Reports, 41, 119–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Dempster, A.P. (1974). The direct use of likelihood for significance testing. In Proc. Conference on foundational questions in Statistical inference. University of Aarhus, pp. 335–352.

  • Devroye, L. (1986). Non-uniform random variate generation. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Diebolt, J. and Robert, C.P. (1994). Estimation of finite mixture distributions through Bayesian sampling. J. R. Stat. Soc., Ser. B, 56, 363–375.

    MathSciNet  MATH  Google Scholar 

  • Dimitrakopoulou, T., Adamidis, K. and Loukas, S. (2007). A lifetime distribution with an upside-down bathtub-shaped hazard function. IEEE Trans. Reliab., 56, 308–311.

    Article  Google Scholar 

  • Geisser, S. and Eddy, W.F. (1979). A predictive approach to model selection. J. Am. Stat. Assoc., 74, 153–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A.E. (1996). Model determination using sampling based methods. In Markov Chain Monte Carlo in Practice, (W.R. Gilks, S. Richardson and D.J. Spiegelhalter, eds.). Chapman and Hall, London, pp. 145–161.

    Google Scholar 

  • Gelfand, A.E. and Ghosh, S.K. (1998). Model choice: a minimum posterior predictive loss approach. Biometrika, 85, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, J.K. and Samanta, T. (2002). Non subjective Bayes testing – an overview. J. Stat. Plan. Inf., 103, 205–223.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilks, W.R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. App. Stat., 41, 337–348.

    Article  MATH  Google Scholar 

  • Gupta, A., Mukherjee, B. and Upadhyay, S.K. (2008). Weibull extension model: a Bayes study using Markov chain Monte Carlo simulation. Reliab. Eng. Syst. Safety, 93, 1434–1443.

    Article  Google Scholar 

  • Gurvich, M.R., Dibenedetto, A.T. and Ranade, S.V. (1997). A new statistical distribution for characterizing the random strength of brittle materials. J. Mater. Sci., 32, 2559–2564.

    Article  Google Scholar 

  • Jaisingh, L.R., Dey, D.K. and Griffith, W.S. (1993). Properties of multivariate survival distribution generated by Weibull and inverse gamma mixtures. IEEE Trans. Reliab., 42, 618–622.

    Article  MATH  Google Scholar 

  • Jiang, R. and Murthy, D.N.P. (1999). The exponentiated Weibull family: a graphical approach. IEEE Trans. Reliab., 48, 68–72.

    Article  Google Scholar 

  • Krohn, C.A. (1969). Hazard versus renewal rate of electronic items. IEEE Trans. Reliab., R-18, 64–73.

    Article  Google Scholar 

  • Lai, C.D., Xie, M. and Murthy, D.N.P. (2003). A modified Weibull distribution. IEEE Trans. Reliab., 52, 33–37.

    Article  Google Scholar 

  • Laud, P.W. and Ibrahim, J.G. (1995). Predictive model selection. J. R. Stat. Soc., Ser. B, 57, 247–262.

    MathSciNet  MATH  Google Scholar 

  • Mann, N.R., Schafer, R.E. and Singpurwalla, N.D. (1974). Methods for statistical analysis of reliability and life data. John Wiley, New York.

    MATH  Google Scholar 

  • Martz, H.F., and Waller, R.A. (1982). Bayesian reliability analysis. John Wiley, New York.

    MATH  Google Scholar 

  • Mudholkar, G.S. and Hutson, A.D. (1996). The exponentiated Weibull family: some properties and a flood data application. Commun. Stat. - Theor. Meth., 25, 3059–3083.

    Article  MathSciNet  MATH  Google Scholar 

  • Mudholkar, G.S. and Srivastava, D.K. (1993). Exponentiated Weibull family for analyzing bathtub failure rate data. IEEE Trans. Reliab., 42, 299–302.

    Article  MATH  Google Scholar 

  • Mudholkar, G.S, Srivastava, D.K. and Freimer, M. (1995). The exponentiated Weibull family – a reanalysis of the bus-motor-failure data. Technometrics, 37, 436–445.

    Article  MATH  Google Scholar 

  • Mudholkar, G.S, Srivastava, D.K. and Kollia, G.D. (1996). A Generalization of the Weibull distribution with application to the analysis of survival data. J. Am. Stat. Assoc., 91, 1575–1583.

    Article  MathSciNet  MATH  Google Scholar 

  • Nadarajah, S. (2005). On the moments of the modified Weibull distribution. Reliab. Eng. Syst. Safety, 90, 114–117.

    Article  Google Scholar 

  • Patra, K. and Dey, D.K. (1999). A multivariate mixture of Weibull distribution in reliability models. Stat. Probab. Lett., 45, 225–235.

    Article  MathSciNet  MATH  Google Scholar 

  • Sahu, S.K. and Dey, D.K. (2000). A comparison of frailty and other models for bivariate survival data. Lifetime Data Anal., 6, 207–228.

    Article  MATH  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Vander Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc., Ser. B, 64, 583–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, Y., Xie, M. and Goh, T.N. (2003). Statistical analysis of a Weibull extension model. Commun. Stat. - Theor. Meth., 32, 913–928.

    Article  MathSciNet  MATH  Google Scholar 

  • Upadhyay, S.K. and Gupta, A. (2010). Bayesian analysis of modified Weibull distribution using Markov Chain Monte Carlo simulation. J. Stat. Comp. Simul., 80, 241–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Upadhyay, S.K. and Smith, A.F.M. (1994). Modeling complexities in reliability and the role of simulation in Bayesian computation. Int. J. Cont. Eng. Ed., 4, 93–104.

    Google Scholar 

  • Upadhyay, S.K., Vasishta, N. and Smith, A.F.M. (2001). Bayes inference in life testing and reliability via Markov chain Monte Carlo simulation. Sankhya, Ser. A, 63, 15–40.

    MATH  Google Scholar 

  • Vaupel, J.W. and Yashin A.I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population dynamics. Am. Stat., 39, 176–184.

    MathSciNet  Google Scholar 

  • Wang, F.K. (2000). A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliab. Eng. Syst. Safety, 70, 305–312.

    Article  Google Scholar 

  • Weibull, W. (1951). A statistical distribution function of wide applicability. J. Appl. Mech., 18, 293–297.

    MATH  Google Scholar 

  • Wondmagegnehu, E.T., Navarro, J. and Hernandez, P.J. (2005). Bathtub shaped failure rates from mixtures: a practical point of view. IEEE Trans. Reliab., 54, 270–275.

    Article  Google Scholar 

  • Xie, M. and Lai, C.D. (1996). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst. Safety, 52, 87–93.

    Article  Google Scholar 

  • Xie, M., Tang, Y. and Goh, T.N. (2002). A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Safety, 76, 279–285.

    Article  Google Scholar 

  • Zhang, T.L. and Xie, M. (2007). Failure data analysis with extended Weibull distribution. Commun. Stat. Simul. Comput., 36, 579–592.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research work of Ashutosh Gupta is financially supported by Council of Scientific and Industrial Research, New Delhi, India in the form of Senior Research Fellowship.

The authors wish to express their thankfulness to the Editor and anonymous referees of the Journal for improving the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Upadhyay.

Appendices

Appendix

Following algorithm was used to generate iteratively the parameter θ and the missing data z from π (θ ∣ x, z) and f (zx, θ), respectively.

Let \(\theta^0=\left( {\theta_1^{\left( 0 \right)} ,\theta_2^{\left( 0 \right)} \ldots\ldots \theta _{r}^{\left( 0 \right)}} \right)\) be the initial starting values in the iteration scheme then the algorithm at ‘t th’ step can be written as,

(i):

generate z (t)f (z ∣ x, θ (t)).

(ii):

generate θ (t + 1)π(θ ∣ x, z (t)).

where f(z ∣ x, θ (t)) is a multinomial distribution with weights given by \(\frac{p_j^{\left( t \right)} {f}_{j}^{\left({t} \right)} \left( {x_i} \right)}{\sum\limits_{l=1}^k {p_l^{\left( t \right)} {f}_{l}^{\left({t} \right)} \left( {x_i} \right)} }\), j = 1,2, . . . ,k, i = 1,2, . . . ,n, and π(θ|x, z) is used to denote the posterior of θ.

We have two mixture models, namely WEWM and MWWM, each having two components with mixing proportion p and 1 − p and, therefore, it would be more convenient to define z ij such that z i  = z i1 and 1 − z i  = z i2 for i = 1, 2,...,n. In this case f(z ∣ x, θ (t)) becomes simply binomial distribution with weights p and 1 − p , where

$${p}^\ast =\frac{p^{\left({t} \right)}{f}_1^{\left({t} \right)} \left( {x_i} \right)}{p^{\left({t} \right)}{f}_1^{\left({t} \right)} \left( {x_i} \right)+\left( {1-p} \right)^{\left({t} \right)}{f}_2^{\left({t} \right)} \left( {x_i} \right)}. $$

Generation from π(θ ∣ x, z (t)) in step (ii) can be achieved using any of the MCMC procedures. To explore, let us write the full conditionals corresponding to each of the two mixture models so that the possibility of working in one dimension can be thought of. It is to be noted that if all the full conditionals are easily available where available is taken to mean that samples can be efficiently and straightforwardly generated, the generation from π (θ ∣ x, z (t)) reduces to simply Gibbs sampler implementation. In case a full conditional is difficult to run, one can apply Metropolis algorithm as a mixing strategy with the Gibbs sampler.

Full conditionals and generating algorithms for WEWM model

$$ f_{11} \left( {p\left| {\alpha_1, \beta_1} \right.,\lambda_1, \alpha, \beta, \mu} \right)\propto {p}^{\sum\limits_{i=1}^n {{z}_{i}} +a-1} \left( {{1-p}} \right)^{\left( {n-\sum\limits_{i=1}^n {z_i} } \right)+b-1}, $$
(A1)
$$ \begin{array}{rll} &&f_{12} \left( {\alpha_1 \left| {p,\beta_1, \lambda_1, \alpha, \beta }, \right.\mu} \right)\\ &&\quad\propto \alpha _1^{\phi_1 -\left( {1 \mathord{\left/ {\vphantom {1 {\beta_1} }} \right. \kern-\nulldelimiterspace} {\beta_1} } \right)\sum\limits_{i=1}^n {z_i} -1} \mathrm{exp}\left\{ {{-}\lambda_1 \alpha _1^{\left( {{1-1} \mathord{\left/ {\vphantom {{1-1} {\beta_1} }} \right. \kern-\nulldelimiterspace} {\beta_1} } \right)} \sum\limits_{i=1}^n {\left( {e^{\alpha_1 x_i} -1} \right)z_i} } \right\}\\ &&\qquad\times\exp \left( {\alpha_1 \sum\limits_{i=1}^n {x_i z_i} } \right) \exp \left({-\frac{\alpha_1} {\varphi_1} } \right), \end{array} $$
(A2)
$$ \begin{array}{rll} f_{13} \left( {\beta_1 \left| {p,\alpha_1, \lambda_1, \alpha, \beta }, \right.\mu} \right)&\propto& \beta_1^{\sum\limits_{i=1}^n {{z}_{i}} } \alpha_1^{-\left( {1 \mathord{\left/ {\vphantom {1 {\beta_1} }} \right. \kern-\nulldelimiterspace} {\beta_1} } \right)\sum\limits_{i=1}^n {z_i} } \prod\limits_{{i}={1}}^{n} {{x}_{i}^{\left( {\beta_1 -1} \right)z_i} } \\ &&\quad\times\mathrm{exp}\left\{ {{-}\lambda_1 \alpha_1^{\left( {{1-1} \mathord{\left/ {\vphantom {{1-1} {\beta_1} }} \right. \kern-\nulldelimiterspace} {\beta_1} } \right)} \sum\limits_{i=1}^n {\left( {e^{\alpha_1 x_i} -1} \right)z_i} } \right\}, \end{array} $$
(A3)
$$f_{14} \left( {\lambda_1 \left| {p,\alpha_1, \beta_1, \alpha, \beta }, \right.\mu} \right)\propto \lambda_1^{\sum\limits_{i=1}^n {z_i} } \mathrm{exp}\left\{ {{-}\lambda_1 \alpha_1^{\left( {{1-1} \mathord{\left/ {\vphantom {{1-1} {\beta_1} }} \right. \kern-\nulldelimiterspace} {\beta_1} } \right)} \sum\limits_{i=1}^n {\left( {e^{\alpha_1 x_i} -1} \right)z_i} } \right\}, $$
(A4)
$$ \begin{array}{rll}f_{15} \left( {\alpha \left| {p,\alpha_1, \beta_1, \lambda_1, \beta }, \right.\mu} \right)&\propto & {\alpha}^{\eta +\left( {\sum\limits_{i\in A} {\left( {1-z_i} \right)}} \right)-1}\\ &&\times \,\exp \left\{{-{\alpha} \left( {\sum\limits_{i\in A} {\left( {x_i -{\mu}} \right)^{\beta} \left( {1-z_i} \right)} } \right)+\frac{1}{\kappa}} \right\}, \end{array} $$
(A5)
$$ \begin{array}{rll}f_{16} \left( {\beta \left| {p,\alpha_1, \beta_1, \lambda_1, \alpha }, \right.\mu} \right)& \propto &\beta^{\sum\limits_{i\in A} {\left( {1-z_i} \right)}} \prod\limits_{i\in A} {\left( {{x}_{i} -\mu} \right)^{\left( {\beta -1} \right)\left( {1-z_i} \right)}} \\ &&\quad\times\mathrm{exp}\left\{ {{-}\alpha \sum\limits_{i\in A} {\left( {x_i -\mu} \right)^{\beta} \left( {1-z_i} \right)}} \right\}, \end{array} $$
(A6)
$$ \begin{array}{rll} f_{17} \left( {\mu \left| {p,\alpha_1, \beta_1, \lambda_1, \alpha }, \right.\beta} \right)& \propto& \prod\limits_{i\,\in A} {\left( {{x}_{i} -\mu} \right)^{\left( {\beta -1} \right)\left( {1-z_i} \right)}} \\ &&\quad\times\mathrm{exp}\left\{ {{-}\alpha \sum\limits_{i\in A} {\left( {x_i -\mu} \right)^{\beta} \left( {1-z_i} \right)}} \right\}; \end{array} $$
(A7)

where \(\tau \le \mu \le \min \left\{ {A_x} \right\}=x_k \) (say). It can be seen that the full conditionals (A4) and (A5) are gamma distributions and any gamma generating routine can be used to generate variates from these (see Devroye, 1986). Generation from (A2) and (A3) is a bit complicated and no straightforward generation scheme appears applicable. We considered Metropolis algorithm with suitably centered and scaled univariate normal density as a candidate generating density for the Metropolis implementation (see, for example, Upadhyay, Vasishta and Smith, 2001). Full conditional (A6) is a log-concave density and adaptive rejection algorithm of Gilks and Wild (1992) can be successfully employed for generating from it. A(1) is a beta distribution and generation from it is quite routine.

Generation of μ can be achieved by using rejection sampling through specially designed envelop density for it. We used envelop density g(μ) as

$$ g\left( \mu \right)=\left( {{1}+\left( {\beta {-1}} \right)\left( {{1-z}_{k}} \right)} \right)\frac{\left( {{x}_{k} -\mu} \right)^{\left( {\beta {-1}} \right)\left( {{1-z}_{k}} \right)}}{\left( {x_{k} -\tau} \right)^{\left( {\beta {-1}} \right)\left( {{1-z}_{k}} \right)+{1}}}{, } \tau \le \mu \mathrm{ } \le \mathrm{min}\left\{ {{A}_{x}} \right\}{.} $$

Full conditionals and generating algorithms for MWWM model

$$ f_{21} \left( {p\left| {\alpha_2, \beta_2} \right.,\lambda_2, \alpha, \beta, \mu} \right)\propto { p}^{\sum\limits_{i=1}^n {{z}_{i}} +a-1}\mathrm{ } \left( {{1-p}} \right)^{^{\left( {n-\sum\limits_{i=1}^n {z_i} } \right)+b-1}}, $$
(B1)
$$ \begin{array}{rll} f_{22} \left( {\alpha_2 \left| {p,\beta_2, \lambda_2, \alpha, \beta }, \right.\mu} \right)&\propto& \alpha_2^{\phi_2 +\sum\limits_{i=1}^n {z_i} -1} \\ &&\quad\times\exp \left[ {-\alpha_2 \left( {\sum\limits_{i=1}^n {x_i^{\beta_2} e^{\lambda_2 x_i} z_i} +\frac{\alpha_2} {\varphi_2} } \right)} \right], \end{array} $$
(B2)
$$ \begin{array}{rll} f_{23} \left( {\beta_2 \left| {p,\alpha_2, \lambda_2, \alpha, \beta, } \right.\mu} \right)&\propto &\prod\limits_{i=1}^n {\left\{ {\left( {\beta_2 +\lambda_2 \cdot x_i} \right)\cdot x_i^{\beta_2 -1}} \right\}^{z_i} }\\ &&\quad\cdot \exp \left[ {-\alpha_2 \sum\limits_{i=1}^n {x_i^{\beta_2} \exp \left( {\lambda_2 x_i} \right)} \mathrm{ }z_i} \right] \end{array} $$
(B3)
$$ \begin{array}{rll} f_{24} \left( {\lambda_2 \left| {p,\alpha_2, \beta_2, \alpha, \beta }, \right.\mu} \right)&\propto & \prod\limits_{i=1}^n \left( {\beta_2 +\lambda_2 \cdot x_i} \right)^{z_i} \cdot \exp \{\lambda_2 \sum\limits_{i=1}^n {x_i z_i} )\\ &&\cdot \exp \left[ {-\alpha_2 \sum\limits_{i=1}^n {x_i^{\beta_2} \exp \left( {\lambda_2 x_i} \right)} z_i} \right], \end{array} $$
(B4)
$$ \begin{array}{rll} f_{25} \left( {\alpha \left| {p,\alpha_2, \beta_2, \lambda_2, \beta }, \right.\,\mu} \right)&\propto & \alpha ^{\eta +\left( {\sum\limits_{i\in A} {\left( {1-z_i} \right)}} \right)-1}\\ &&\times\exp \left\{ {-\alpha \left( {\sum\limits_{i\in A} {\left( {x_i -\mu} \right)^{\beta} \left( {1-z_i} \right)}} \right)+\frac{1}{\kappa} } \right\}, \end{array} $$
(B5)
$$ \begin{array}{rll} f_{26} \left( {\beta \left| {p,\alpha_2, \beta_2, \lambda_2, \alpha }, \right.\,\mu} \right)&\propto &\beta^{\sum\limits_{i\in A} {\left( {1-z_i} \right)}} \mathrm{ } \prod\limits_{i\in A} {\left( {{x}_{i} -\mu} \right)^{\left( {\beta -1} \right)\left( {1-z_i} \right)}} \\ &&\times\mathrm{exp}\left\{ {{-}\alpha \sum\limits_{i\in A} {\left( {x_i -\mu} \right)^{\beta} \left( {1-z_i} \right)}} \right\}, \end{array} $$
(B6)
$$ \begin{array}{rll} f_{27} \left( {\mu \left| {p,\alpha_2, \beta_2, \lambda_2, \alpha }, \right.\beta} \right)&\propto &\prod\limits_{i\,\in A} {\left( {{x}_{i} -\mu} \right)^{\left( {\beta -1} \right)\left( {1-z_i} \right)}} \\ &&\times\mathrm{exp}\left\{ {{-}\alpha \sum\limits_{i\in A} {\left( {x_i -\mu} \right)^{\beta} \left( {1-z_i} \right)}} \right\}, \end{array} $$
(B7)

where \(\tau \le \mu \mathrm{ } \le \min \left\{ {A_x} \right\}\). It is clear that full conditionals (B1), (B5), (B6) and (B7) are similar to (A1), (A5), (A6) and (A7) and, therefore, generation schemes for the corresponding variates remain the same. Full conditionals (B3) and (B4) can be shown to be log-concave and generation of corresponding variates can be done using adaptive rejection algorithm (see Gilks and Wild, 1992). Finally, (B2) is a gamma density and any standard gamma generating algorithm can be used to generate variates from this full conditional. We used a gamma generating routine given in Devroye (1986).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, S.K., Gupta, A. & Dey, D.K. Bayesian modeling of bathtub shaped hazard rate using various Weibull extensions and related issues of model selection. Sankhya B 74, 15–43 (2012). https://doi.org/10.1007/s13571-012-0041-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-012-0041-4

AMS (2000) subject classification.

Keywords and phrases.

Navigation