Skip to main content
Log in

Mechanistic Study on Electron Capture Dissociation of the Oligosaccharide-Mg2+ Complex

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg2+ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg2+ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg2+ and the resultant Mg+• can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg2+-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001)

    Article  CAS  Google Scholar 

  2. Stanley, P., Schachter, H., Taniguchi, N.: N-Glycans. In: Varki, A., Cummings, R.D., Esko, J.D., et al., (eds.) Essentials of Glycobiology, Chapter 8, 2nd edn. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press (2009). Available from http://www.ncbi.nlm.nih.gov/books/NBK1917

  3. Ashline, D.J., Lapadula, A.J., Liu, Y.-H., Lin, M., Grace, M., Pramanik, B., Reinhold, V.N.: Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal. Chem. 79, 3830–3842 (2007)

    Article  CAS  Google Scholar 

  4. Cancilla, M.T., Penn, S.G., Carroll, J.A., Lebrilla, C.B.: Coordination of alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization Fourier transform mass spectrometry. J. Am. Chem. Soc. 118, 6736–6745 (1996)

    Article  CAS  Google Scholar 

  5. Cancilla, M.T., Wang, A.W., Voss, L.R., Lebrilla, C.B.: Fragmentation reactions in the mass spectrometry analysis of neutral oligosaccharides. Anal. Chem. 71, 3206–3218 (1999)

    Article  CAS  Google Scholar 

  6. Harvey, D.J.: Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J. Mass Spectrom. 35, 1178–1190 (2000)

    Article  CAS  Google Scholar 

  7. Harvey, D.J.: Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 5, 1774–1786 (2005)

    Article  CAS  Google Scholar 

  8. Harvey, D.J., Bateman, R.H., Green, M.R.: High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 32, 167–187 (1997)

    Article  CAS  Google Scholar 

  9. Hofmeister, G.E., Zhou, Z., Leary, J.A.: Linkage position determination in lithium-cationized disaccharides-tandem mass spectrometry and semiempirical calculations. J. Am. Chem. Soc. 113, 5964–5970 (1991)

    Article  CAS  Google Scholar 

  10. Lemoine, J., Fournet, B., Despeyroux, D., Jennings, K.R., Rosenberg, R., Dehoffmann, E.: Collision-induced dissociation of alkali-metal cationized and permethylated oligosaccharides—influence of the collision energy and of the collision gas for the assignment of linkage position. J. Am. Soc. Mass Spectrom. 4, 197–203 (1993)

    Article  CAS  Google Scholar 

  11. Sheeley, D.M., Reinhold, V.N.: Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. Anal. Chem. 70, 3053–3059 (1998)

    Article  CAS  Google Scholar 

  12. Viseux, N., deHoffmann, E., Domon, B.: Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Anal. Chem. 69, 3193–3198 (1997)

    Article  CAS  Google Scholar 

  13. Kailemia, M.J., Li, L., Ly, M., Linhardt, R.J., Amster, I.J.: Complete mass spectral characterization of a synthetic ultralow-molecular-weight heparin using collision-induced dissociation. Anal. Chem. 84, 5475–5478 (2012)

    Article  CAS  Google Scholar 

  14. Xie, Y., Lebrilla, C.B.: Infrared multiphoton dissociation of alkali metal-coordinated oligosaccharides. Anal. Chem. 75, 1590–1598 (2003)

    Article  CAS  Google Scholar 

  15. Adamson, J.T., Hakansson, K.: Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides. J. Proteome Res. 5, 493–501 (2006)

    Article  CAS  Google Scholar 

  16. Devakumar, A., Mechref, Y., Kang, P., Novotny, M.V., Reilly, J.P.: Laser-induced photofragmentation of neutral and acidic glycans inside an ion-trap mass spectrometer. Rapid Commun. Mass Spectrom. 21, 1452–1460 (2007)

    Article  CAS  Google Scholar 

  17. Wilson, J.J., Brodbelt, J.S.: Ultraviolet photodissociation at 355 nm of fluorescently labeled oligosaccharides. Anal. Chem. 80, 5186–5196 (2008)

    Article  CAS  Google Scholar 

  18. Ko, B.J., Brodbelt, J.S.: 193 nm Ultraviolet photodissociation of deprotonated sialylated oligosaccharides. Anal. Chem. 83, 8192–8200 (2011)

    Article  CAS  Google Scholar 

  19. Racaud, A., Antoine, R., Joly, L., Mesplet, N., Dugourd, P., Lemoine, J.: Wavelength-tunable ultraviolet photodissociation (UVPD) of heparin-derived disaccharides in a linear ion trap. J. Am. Soc. Mass Spectrom. 20, 1645–1651 (2009)

    Article  CAS  Google Scholar 

  20. Gao, J., Thomas, D.A., Sohn, C.H., Beauchamp, J.L.: Biomimetic reagents for the selective free radical and acid base chemistry of glycans: application to glycan structure determination by mass spectrometry. J. Am. Chem. Soc. 135, 10684–10692 (2013)

    Article  CAS  Google Scholar 

  21. Adamson, J.T., Hakansson, K.: Electron capture dissociation of oligosaccharides ionized with alkali, alkaline earth, and transition metals. Anal. Chem. 79, 2901–2910 (2007)

    Article  CAS  Google Scholar 

  22. Yu, X., Huang, Y., Lin, C., Costello, C.E.: Energy-dependent electron activated dissociation of metal-adducted permethylated oligosaccharides. Anal. Chem. 84, 7487–7494 (2012)

    Article  CAS  Google Scholar 

  23. Zhao, C., Xie, B., Chan, S.Y., Costello, C.E., O'Connor, P.B.: Collisionally activated dissociation and electron capture dissociation provide complementary structural information for branched permethylated oligosaccharides. J. Am. Soc. Mass Spectrom. 19, 138–150 (2008)

    Article  CAS  Google Scholar 

  24. Zhou, W., Håkansson, K.: Electron capture dissociation of divalent metal-adducted sulfated N-glycans released from bovine thyroid stimulating hormone. J. Am. Soc. Mass Spectrom. 24, 1798–1806 (2013)

    Article  CAS  Google Scholar 

  25. Han, L., Costello, C.E.: Electron transfer dissociation of milk oligosaccharides. J. Am. Soc. Mass Spectrom. 22, 997–1013 (2011)

    Article  CAS  Google Scholar 

  26. Yu, X., Jiang, Y., Chen, Y., Huang, Y., Costello, C.E., Lin, C.: Detailed glycan structural characterization by electronic excitation dissociation. Anal. Chem. 85, 10017–10021 (2013)

    Article  CAS  Google Scholar 

  27. Budnik, B.A., Haselmann, K.F., Elkin, Y.N., Gorbach, V.I., Zubarev, R.A.: Applications of electron-ion dissociation reactions for analysis of polycationic chitooligosaccharides in Fourier transform mass spectrometry. Anal. Chem. 75, 5994–6001 (2003)

    Article  CAS  Google Scholar 

  28. Wolff, J.J., Laremore, T.N., Aslam, H., Linhardt, R.J., Amster, I.J.: Electron-induced dissociation of glycosaminoglycan tetrasaccharides. J. Am. Soc. Mass Spectrom. 19, 1449–1458 (2008)

    Article  CAS  Google Scholar 

  29. Wolff, J.J., Amster, I.J., Chi, L., Linhardt, R.J.: Electron detachment dissociation of glycosaminoglycan tetrasaccharides. J. Am. Soc. Mass Spectrom. 18, 234–244 (2007)

    Article  CAS  Google Scholar 

  30. Adamson, J.T., Håkansson, K.: Electron detachment dissociation of neutral and sialylated oligosaccharides. J. Am. Soc. Mass Spectrom. 18, 2162–2172 (2007)

    Article  CAS  Google Scholar 

  31. Wolff, J.J., Leach, F.E., Laremore, T.N., Kaplan, D.A., Easterling, M.L., Linhardt, R.J., Amster, I.J.: Negative electron transfer dissociation of glycosaminoglycans. Anal. Chem. 82, 3460–3466 (2010)

    Article  CAS  Google Scholar 

  32. Zubarev, R.A., Kelleher, N.L., McLafferty, F.W.: Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998)

    Article  CAS  Google Scholar 

  33. Zubarev, R.A., Kruger, N.A., Fridriksson, E.K., Lewis, M.A., Horn, D.M., Carpenter, B.K., McLafferty, F.W.: Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 121, 2857–2862 (1999)

    Article  CAS  Google Scholar 

  34. Zubarev, R.A., Haselmann, K.F., Budnik, B., Kjeldsen, F., Jensen, F.: Towards an understanding of the mechanism of electron-capture dissociation: a historical perspective and modern ideas. Eur. J. Mass Spectrom. 8, 337–349 (2002)

    Article  CAS  Google Scholar 

  35. Breuker, K., Oh, H., Lin, C., Carpenter, B.K., McLafferty, F.W.: Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc. Natl. Acad. Sci. U. S. A. 101, 14011–14016 (2004)

    Article  CAS  Google Scholar 

  36. Syrstad, E.A., Turecek, F.: Toward a general mechanism of electron capture dissociation. J. Am. Soc. Mass Spectrom. 16, 208–224 (2005)

    Article  CAS  Google Scholar 

  37. Sobczyk, M., Anusiewicz, I., Berdys-Kochanska, J., Sawicka, A., Skurski, P., Simons, J.: Coulomb-assisted dissociative electron attachment: application to a model peptide. J. Phys. Chem. A 109, 250–258 (2004)

    Article  Google Scholar 

  38. Simons, J.: Mechanisms for S–S and N–Cα bond cleavage in peptide ECD and ETD mass spectrometry. Chem. Phys. Lett. 484, 81–95 (2010)

    Article  CAS  Google Scholar 

  39. Tureček, F.: NCα bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a non-ergodic process? J. Am. Chem. Soc. 125, 5954–5963 (2003)

    Article  Google Scholar 

  40. Chamot-Rooke, J., Malosse, C., Frison, G., Tureček, F.: Electron capture in charge-tagged peptides. Evidence for the role of excited electronic states. J. Am. Soc. Mass Spectrom. 18, 2146–2161 (2007)

    Article  CAS  Google Scholar 

  41. Tureček, F., Julian, R.R.: Peptide radicals and cation radicals in the gas phase. Chem. Rev. 113, 6691–6733 (2013)

    Article  Google Scholar 

  42. Liu, H., Håkansson, K.: Divalent metal ion–peptide interactions probed by electron capture dissociation of trications. J. Am. Soc. Mass Spectrom. 17, 1731–1741 (2006)

    Article  CAS  Google Scholar 

  43. Kleinnijenhuis, A.J., Mihalca, R., Heeren, R.M.A., Heck, A.J.R.: Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin. Int. J. Mass Spectrom. 253, 217–224 (2006)

    Article  CAS  Google Scholar 

  44. Fung, Y.M.E., Liu, H., Chan, T.W.D.: Electron capture dissociation of peptides metalated with alkaline-earth metal ions. J. Am. Soc. Mass Spectrom. 17, 757–771 (2006)

    Article  CAS  Google Scholar 

  45. Chen, X., Fung, Y., Chan, W., Wong, P., Yeung, H., Chan, T.W.D.: Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. J. Am. Soc. Mass Spectrom. 22, 2232–2245 (2011)

    Article  CAS  Google Scholar 

  46. Chen, X., Chan, W., Wong, P., Yeung, H., Chan, T.: Formation of peptide radical cations (M+) in electron capture dissociation of peptides adducted with group IIB metal ions. J. Am. Soc. Mass Spectrom. 22, 233–244 (2011)

    Article  CAS  Google Scholar 

  47. Flick, T., Donald, W., Williams, E.: Electron capture dissociation of trivalent metal ion–peptide complexes. J. Am. Soc. Mass Spectrom. 24, 193–201 (2013)

    Article  CAS  Google Scholar 

  48. Koster, C., Holle, A.: A new intelligent annotation procedure: SNAP. Proceedings of the ASMS annual conference, Dallas, TX, 13–17 June 1999

  49. Brooks, B.R., Brooks, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)

    Article  CAS  Google Scholar 

  50. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  51. Becke, A.D.: Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  52. Stephens, P., Devlin, F., Chabalowski, C., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  CAS  Google Scholar 

  53. Scott, A.P., Radom, L.: Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 100, 16502–16513 (1996)

    Article  CAS  Google Scholar 

  54. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.J., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian, Inc.: Wallingford CT, C.02 edn. (2004)

  55. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in Fab-Ms Ms spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  56. Weimar, T., Kreis, U.C., Andrews, J.S., Pinto, B.M.: Conformational analysis of maltoside heteroanalogues using high-quality NOE data and molecular mechanics calculations. Flexibility as a function of the interglycosidic chalcogen atom. Carbohydr. Res. 315, 222–233 (1999)

    Article  CAS  Google Scholar 

  57. Mendonca, S., Johnson, G.P., French, A.D., Laine, R.A.: Conformational analyses of native and permethylated disaccharides. J. Phys. Chem. A 106, 4115–4124 (2002)

    Article  CAS  Google Scholar 

  58. da Silva, C.O., Nascimento, M.A.C.: Ab initio conformational maps for disaccharides in gas phase and aqueous solution. Carbohydr. Res. 339, 113–122 (2004)

    Article  Google Scholar 

  59. Woods, R.J., Dwek, R.A., Edge, C.J., Fraser-Reid, B.: Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 Parameter Development. J. Phys. Chem. 99, 3832–3846 (1995)

    Article  CAS  Google Scholar 

  60. Zheng, Y.-J., Ornstein, R.L., Leary, J.A.: A density functional theory investigation of metal ion binding sites in monosaccharides. J. Mol. Struct. THEOCHEM 389, 233–240 (1997)

    Article  CAS  Google Scholar 

  61. Spengler, B., Dolce, J.W., Cotter, R.J.: Infrared laser desorption mass spectrometry of oligosaccharides: fragmentation mechanisms and isomer analysis. Anal. Chem. 62, 1731–1737 (1990)

    Article  CAS  Google Scholar 

  62. Cooper, H.J., Hudgins, R.R., Hakansson, K., Marshall, A.G.: Secondary fragmentation of linear peptides in electron capture dissociation. Int. J. Mass Spectrom. 228, 723–728 (2003)

    Article  CAS  Google Scholar 

  63. Leymarie, N., Costello, C.E., O'Connor, P.B.: Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 125, 8949–8958 (2003)

    Article  CAS  Google Scholar 

  64. O'Connor, P.B., Lin, C., Cournoyer, J.J., Pittman, J.L., Belyayev, M., Budnik, B.A.: Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 17, 576–585 (2006)

    Article  Google Scholar 

  65. Savitski, M.M., Kjeldsen, F., Nielsen, M.L., Zubarev, R.A.: Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. J. Am. Soc. Mass Spectrom. 18, 113–120 (2007)

    Article  CAS  Google Scholar 

  66. Kjeldsen, F., Haselmann, K.F., Budnik, B.A., Jensen, F., Zubarev, R.A.: Dissociative capture of hot (3–13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation. Chem. Phys. Lett. 356, 201–206 (2002)

    Article  CAS  Google Scholar 

  67. Tsybin, Y.O., He, H., Emmett, M.R., Hendrickson, C.L., Marshall, A.G.: Ion activation in electron capture dissociation to distinguish between N-terminal and C-terminal product ions. Anal. Chem. 79, 7596–7602 (2007)

    Article  CAS  Google Scholar 

  68. Li, X., Lin, C., Han, L., Costello, C.E., O'Connor, P.B.: Charge remote fragmentation in electron capture and electron transfer dissociation. J. Am. Soc. Mass Spectrom. 21, 646–656 (2010)

    Article  CAS  Google Scholar 

  69. Tsybin, Y.O., Ramström, M., Witt, M., Baykut, G., Håkansson, P.: Peptide and protein characterization by high-rate electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry. J. Mass Spectrom. 39, 719–729 (2004)

    Article  CAS  Google Scholar 

  70. Chalkley, R.J., Brinkworth, C.S., Burlingame, A.L.: Side-chain fragmentation of alkylated cysteine residues in electron capture dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1271–1274 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Institutes of Health via research grants P41 RR10888/GM104603, and S10 RR025082. The authors also acknowledge technical support and computing resources provided by the Scientific Computing and Visualization Group at Boston University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Pu, Y., Yu, X. et al. Mechanistic Study on Electron Capture Dissociation of the Oligosaccharide-Mg2+ Complex. J. Am. Soc. Mass Spectrom. 25, 1451–1460 (2014). https://doi.org/10.1007/s13361-014-0921-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0921-0

Keywords

Navigation