Skip to main content
Log in

Formation of hemoglobin assisted graphene oxide biocomposite film

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Graphene oxide is a one-atom thick layer of graphite and has evolved as a promising precursor for preparing graphene-based composite materials with wide range of applications. Nowadays studies on the binding of biomolecules and nanoparticles with graphene oxide have become an interesting subject to researchers. In this paper, we report the interaction of graphene oxide with hemoglobin at the air–water interface by Langmuir–Blodgett and spectroscopic techniques. Study of the surface pressure growth kinetics reveals that an increased amount of graphene oxide in water subphase enhances surface activity of hemoglobin. The composite monolayers have been transferred onto glass substrate for characterizations by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, UV–vis absorption and emission spectroscopy and circular dichroism. Studies show the decrement of α-helix with increasing concentration of graphene oxide with no major change in β-sheet, which suggests a modification of secondary structure of hemoglobin due to formation of hemoglobin graphene oxide complex. Hemoglobin changes its conformation in presence of the micro hydrophobic environment of graphene oxide sheet, thus forming the said complex at air–water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K P Loh, Q Bao, G Eda and M Chhowalla Nature Chem. 2 1015 (2010)

    Article  ADS  Google Scholar 

  2. D A Dikin et al. Nature 448 457 (2007)

    Article  ADS  Google Scholar 

  3. X F Jiang, L Polavarapu, S T Neo, T Venkatesan and Q H Xu J. Phys. Chem. Lett. 3 785 (2012)

    Article  Google Scholar 

  4. W Lv et al. Carbon 50 3233 (2012)

    Article  Google Scholar 

  5. I Jung, D A Dikin, R D Piner and R S Ruoff Nano Lett. 8 4283 (2008)

    Article  ADS  Google Scholar 

  6. S Mitra et al. Indian J. Phys. 85 649 (2011); A Bose, A Mandal, S Mitra, S K De, S Banerjee and D Chakravorty Indian J. Phys. 87 977 (2013)

  7. G Eda, G Fanchini and M Chhowalla Nature. Nanotech. 3 270 (2008)

    Article  Google Scholar 

  8. C Chen et al. Adv. Mater. 21 3007 (2009)

    Article  Google Scholar 

  9. F Kim, L J Cote and J Huang Adv. Mater. 22 1954 (2010)

    Article  Google Scholar 

  10. J Kim, L J Cote, F Kim, W Yuan, K R Shull and J Huang J. Am. Chem. Soc. 132 8180 (2010)

    Article  Google Scholar 

  11. F Chen et al. Langmuir 27 9174 (2011)

    Article  Google Scholar 

  12. L J Cote, F Kim and J Huang J. Am. Chem. Soc. 131 1043 (2009)

    Article  Google Scholar 

  13. J Liu, S Fu, B Yuan, Y Li and Z Deng J. Am. Chem. Soc. 132 7279 (2010)

    Article  Google Scholar 

  14. S Mao, G Lu, K Yu, Z Bo and J Chen Adv. Mater. 22 3521 (2010)

    Article  Google Scholar 

  15. X Sun et al. Nano Res. 1 203 (2008)

    Article  ADS  Google Scholar 

  16. A M Pinto, I C Goncalves and F D Magalhaes Colloids Surf. B 111 188 (2013)

    Article  Google Scholar 

  17. A M Pinto, S Moreira, I C Goncalves, F M Gama, A M Mendes and F D Magalhaes Colloids Surf. B 104 229 (2013)

    Article  Google Scholar 

  18. V C Sanchez, A Jachak, R H Hurt and A B Kane Chem. Res. Toxicol. 25 15 (2012)

  19. C J Kim, W Khan, D H Kim, K S Cho and S Y Park Carb. Pol. 86 903 (2011)

    Article  Google Scholar 

  20. R K Layek, S Samanta, D P Chatterjee and A K Nandi Polymer 51 5846 (2010)

    Article  Google Scholar 

  21. Q Mu et al. ACS Appl. Mater. Interfaces 4 2259 (2012)

    Article  Google Scholar 

  22. C Huang, H Bai, C Li and G Shi Chem. Commun. 47 4962 (2011)

    Article  Google Scholar 

  23. W C Lee et al. ACS Nano 5 7334 (2011)

    Article  Google Scholar 

  24. J Zheng, X Ma, X He, M Gao and G Li Procedia Eng. 27 1478 (2012)

    Article  Google Scholar 

  25. C H Lu, H H Yang, C L Zhu, X Chen and G N Chen Angew. Chem. Int. Ed. 48 4785 (2009)

    Article  Google Scholar 

  26. G K Ramesha and S Sampath Sensors & Actuators B: Chemical 160 306 (2011)

    Article  Google Scholar 

  27. S Stankovich et al. Nature 442 282 (2006)

    Article  ADS  Google Scholar 

  28. R Kou et al. J. Am. Chem. Soc. 133 2541 (2011)

  29. X Feng, R Li, C Hu and W Hou J. Electroanal. Chem. 657 28 (2011)

    Article  Google Scholar 

  30. W S Hummers and R E Offeman J. Am. Chem. Soc. 80 1339 (1958)

    Article  Google Scholar 

  31. A Kundu, R K Layek and A K Nandi J. Mater. Chem. 22 8139 (2012)

  32. M Mahato, P Pal, T Kamilya, R Sarkar and G B Talapatra J. Phys. Chem. B 114 495 (2010)

    Article  Google Scholar 

  33. C Perez-Iratxeta and M Andrade-Navarro BMC Struct. Biol. 8 25 (2008)

    Google Scholar 

  34. P Pal, M Mahato, T Kamilya and G B Talapatra Phys. Chem. Chem. Phys. 13 9385 (2011)

    Article  Google Scholar 

  35. P Pal, T Kamilya, M Mahato and G B Talapatra Colloids Surf. B 73 122 (2009)

    Article  Google Scholar 

  36. R Sarkar, P Pal, M Mahato, A Chaudhuri, T Kamilya and G B Talapatra Colloids Surf. B 79 384 (2010).

    Article  Google Scholar 

  37. H G Kristinsson J. Agri. Food Chem. 50 7669 (2002)

    Article  Google Scholar 

  38. M Noronha, R Santos, E Paci, H Santos and A L Macanita J. Phys. Chem. B 113 4466 (2009)

    Article  Google Scholar 

  39. M Mahato, P Pal, T Kamilya, R Sarkar, A Chaudhuri and G B Talapatra J. Phys. Chem. B 114 7062 (2010)

    Article  Google Scholar 

  40. M Matsui, A Nakahara, A Takatsu, K Kato and N Matsuda Int. J. Chem. Biomol. Eng. 1 72 (2008)

    Google Scholar 

  41. A E F Nassar, J F Rusling and N Nakashima J. Am. Chem. Soc. 118 3043 (1996)

    Article  Google Scholar 

  42. H M Kwaambwa and R Maikokera Colloids Surf. B 64 118 (2008)

    Article  Google Scholar 

  43. G Zhang, Q M Que, J H Pan and J B Guo J. Mol. Struct. 881 132 (2008)

    Article  ADS  Google Scholar 

  44. M Zhang, B C Yin, X F Wang and B C Ye Chem. Commun. 47 2399 (2011)

    Article  Google Scholar 

  45. T G Spiro and T C Strekas J. Am. Chem. Soc. 96 338 (1974)

    Article  Google Scholar 

  46. M Feng and H Tachikawa J. Am. Chem. Soc. 130 7443 (2008)

    Article  Google Scholar 

  47. M Mahato, P Pal, B Tah, M Ghosh and G B Talapatra Colloids Surf. B 88 141 (2011)

    Article  Google Scholar 

  48. T C Strekas and T G Spiro Biochim. Biophys. Acta 263 830 (1972)

    Article  Google Scholar 

  49. T G Spiro and T C Strekas Proc. Natl. Acad. Sci. 69 2622 (1972)

    Article  ADS  Google Scholar 

  50. B R Wood, M Asghari-Khiavi, E Bailo, D McNaughton and V Deckert Nano lett. 12 1555 (2012)

    Article  ADS  Google Scholar 

  51. K N Kudin, B Ozbas, H C Schniepp, R K Prud’Homme, I A Aksay and R Car Nano lett. 8 36 (2008)

    Article  ADS  Google Scholar 

  52. C T Hsieh and W Y Chen Surf. Coat. Technol. 205 4554 (2011)

    Article  Google Scholar 

  53. S Hu, K M Smith and T G Spiro J. Am. Chem. Soc. 118 12638 (1996)

    Article  Google Scholar 

  54. M Abe, T Kitagawa and K Kyogoku J. Chem. Phys. 69 4526 (2008)

    Article  ADS  Google Scholar 

  55. D Wan et al. ACS Nano 6 9068 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the department of Science and Technology (DST), Government of India (Project No-SR/S2/CMP-0079/2010(G)) for partial financial support and to the authority of the IACS for providing central instrumental facilities of FE-SEM, AFM and Micro Raman system. Thanks also go to Prof. A. K. Nandi for providing GO sample and to Dr. Manash Ghosh for helping with the collection of Raman spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Talapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R., Tah, B., Mahato, M. et al. Formation of hemoglobin assisted graphene oxide biocomposite film. Indian J Phys 88, 1147–1155 (2014). https://doi.org/10.1007/s12648-014-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0527-1

Keywords

PACS Nos.

Navigation