Skip to main content
Log in

Genetic improvement of the desiccation tolerance and host-seeking ability of the entomopathogenic nematode Steinernema feltiae

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Entomopathogenic nematodes (EPNs) from the genus Steinernema (Steinernematidae) are used for biological control of insect pests. The infective stages of these nematodes are intolerant of extreme environmental conditions. Genetic improvement has been suggested as an approach for improving their ability to overcome these limitations. In this study, we bred a heterogeneous population of the EPN Steinernema feltiae Filipjev for desiccation tolerance (both rapid and slow) and enhanced host-seeking ability. We selected for tolerance of rapid desiccation by exposing infective juveniles (IJs) to ambient conditions (22–25°C; 50–65% r.h.) for 100 min. A survival rate of 80–90% was reached after ten selection cycles. To select for tolerance of slow desiccation, we exposed IJs to 97% r.h. for 72 h, followed by further exposure to 85% r.h. for an additional 72 h. A high survival rate (>85%) was obtained after 20 selection cycles. We selected for enhanced downward dispersal by forcing IJs to move through a sand column to reach larvae of last-instar Galleria mellonella placed at the bottom of the column. After 25 selection cycles, the majority (>75%) of these nematodes were found at the layer close to the insects. No reduction in fitness was detected in the selected populations. Nevertheless, the nematode population selected for enhanced downward dispersal displayed significantly higher infectivity than the foundation population. The population selected for slow desiccation was more tolerant of heat stress than the foundation population. These findings establish the basis for improvement of this nematode for use as a biological control agent under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu Hatab, M., Selvan, S., & Gaugler, R. (1995). Role of proteases in penetration of insect gut by the entomopathogenic nematode Steinernema glaseri (Nematoda: Steinernematidae). Journal of Invertebrate Pathology, 66, 125–130.

    Article  CAS  Google Scholar 

  • Burnell, A. (2002). Genetics and genetic improvement. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 241–263). Oxon, UK: CABI.

    Chapter  Google Scholar 

  • Capinera, J. L., & Hibbard, B. E. (1987). Bait formulations of chemical and microbial insecticides for suppression of crop-feeding grasshoppers. Journal of Agricultural Entomology, 4, 337–344.

    Google Scholar 

  • Connick, W. J., Jr., Nickle, W. R., & Vinyard, B. T. (1993). “Pesta”: New granular formulations for Steinernema carpocapsae. Journal of Nematology, 25, 198–203.

    CAS  PubMed  Google Scholar 

  • Cooper, A. F., Jr., & Van Gundy, S. D. (1971). Senescence, quiescence and cryptobiosis. In B. M. Zuckerman, W. F. Mai, & R. A. Rohde (Eds.), Plant parasitic nematodes, Vol. II (pp. 297–318). London, UK: Academic.

    Google Scholar 

  • Crowe, J. H., Hoekstra, F. A., & Crowe, L. M. (1992). Anhydrobiosis. Annual Reviews in Physiology, 54, 579–599.

    Article  CAS  Google Scholar 

  • Dye, D. W. (1968). A taxonomic study of the genus Erwinia. I. The ‘amylovora’ group. New Zealand Journal of Science, 11, 590–607.

    Google Scholar 

  • Ehlers, R.-U. (2003). Biocontrol nematodes. In H. M. T. Hokkanen & A. E. Hajek (Eds.), Environmental impacts of microbial insecticides (pp. 177–220). Dordrecht, the Netherlands: Kluwer Academic.

    Google Scholar 

  • Ehlers, R.-U., Oestergaard, J., Hollmer, S., Wingen, M., & Strauch, O. (2005). Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode-bacterium complex Heterorhabditis bacteriophoraPhotorhabdus luminescens. Biocontrol, 50, 699–716.

    Article  Google Scholar 

  • Gaugler, R. (1981). Biological control potential of neoaplectanid nematodes. Journal of Nematology, 13, 241–249.

    CAS  PubMed  Google Scholar 

  • Gaugler, R., & Boush, G. M. (1978). Effects of ultraviolet radiation and sunlight on the entomogenous nematode, Neoaplectana carpocapsae. Journal of Invertebrate Pathology, 32, 291–296.

    Article  Google Scholar 

  • Gaugler, R., Campbell, J., & McGuire, T. (1989). Selection for host finding in Steinernema feltiae. Journal of Invertebrate Pathology, 54, 363–372.

    Article  Google Scholar 

  • Gaugler, R., McGuire, T., & Campbell, J. (1989). Genetic variability among strains of the entomopathogenic nematode Steinernema feltiae. Journal of Nematology, 21, 247–253.

    CAS  PubMed  Google Scholar 

  • Georgis, R., Koppenho, A. M., Lacey, L. A., Bélair, G., Duncan, L. W., Grewal, P. S., et al. (2006). Successes and failures in the use of parasitic nematodes for pest control. Biological Control, 38, 103–123.

    Article  Google Scholar 

  • Glazer, I. (1992). Survival and efficacy of Steinernema carpocapsae in an exposed environment. Biocontrol Science and Technology, 2, 101–107.

    Article  Google Scholar 

  • Glazer, I. (2002). Survival biology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 169–187). Oxon, UK: CABI.

    Chapter  Google Scholar 

  • Glazer, I., Gaugler, R., & Segal, D. (1991). Genetics of the entomopathogenic nematode Heterorhabditis bacteriophora (strain HP88): The diversity of beneficial traits. Journal of Nematology, 23, 324–333.

    CAS  PubMed  Google Scholar 

  • Glazer, I., & Lewis, E. E. (1998). Bioassays for entomopathogenic nematodes. In A. Navon (Ed.), Bioassays for entomopathogens and nematodes (pp. 274–293). Wallingford, UK: CABI.

    Google Scholar 

  • Glazer, I., & Salame, L. (2000). Osmotic survival of the entomopathogenic nematode Steinernema carpocapsae. Biological Control, 18, 251–257.

    Article  Google Scholar 

  • Glazer, I., Salame, L., & Segal, D. (1997). Genetic enhancement of nematicidal resistance of entomopathogenic nematodes. Biocontrol Science and Technology, 7, 499–451.

    Article  Google Scholar 

  • Goodrich-Blair, H., & Clarke, D. J. (2007). Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: Two roads to the same destination. Molecular Microbiology, 64, 260–268.

    Article  CAS  PubMed  Google Scholar 

  • Grewal, P. S. (2002). Formulation and application technology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 265–287). Oxon, UK: CABI.

    Chapter  Google Scholar 

  • Grewal, P. S., Ehlers, R.-U., & Shapiro-Ilan, D. (Eds.). (2005). Nematodes as biological control agents. Oxon, UK: CABI.

    Google Scholar 

  • Grewal, P. S., Gaugler, R., & Wang, Y. (1996). Enhanced cold tolerance of the entomopathogenic nematode Steinernema feltiae through genetic selection. The Annals of Applied Biology, 129, 335–341.

    Article  Google Scholar 

  • Hashmi, S., Hashmi, G., & Gaugler, R. (1995). Genetic transformation of an entomopathogenic nematode by microinjection. Journal of Invertebrate Pathology, 66, 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Hominick, W. M. (2002). Biogeography. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 115–143). Oxon, UK: CABI.

    Chapter  Google Scholar 

  • Iraki, N., Salah, N., Sansour, M. A., Segal, D., Glazer, I., Johning, S.-A., et al. (2000). Isolation and characterization of two entomopathogenic nematode strains, Heterorhabditis indica (Nematoda: Rhabditia), from the West Bank, Palestinian Territories. Journal of Applied Entomology, 124, 375–380.

    Article  Google Scholar 

  • Kaya, H. K. (1985). Entomogenous nematodes for insect control in IPM systems. In M. Hoy & D. C. Herzog (Eds.), Biological control in agricultural IPM systems (pp. 283–302). New York, NY: Academic.

    Google Scholar 

  • Kaya, H. K. (1990). Soil ecology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 93–115). Boca Raton, FL, USA: CRC.

    Google Scholar 

  • Kaya, H. K., Mannion, C. M., Burlando, T. M., & Nelsen, C. E. (1987). Escape of Steinernema feltiae from alginate capsules containing tomato seeds. Journal of Nematology, 19, 287–291.

    CAS  PubMed  Google Scholar 

  • Kaya, H. K., & Nelsen, C. E. (1985). Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: A new approach for insect control and other applications. Environmental Entomology, 14, 572–574.

    Google Scholar 

  • Kaya, H. K., & Stock, S. P. (1997). Techniques in insect nematology. In L. A. Lacey (Ed.), Manual of techniques in insect pathology (pp. 281–324). San Diego, CA, USA: Academic.

    Chapter  Google Scholar 

  • Kung, S. P., & Gaugler, R. (1990). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55, 401–406.

    Article  Google Scholar 

  • Lewis, E. E. (2002). Behavioral ecology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 205–224). New York, NY: CABI.

    Chapter  Google Scholar 

  • Lewis, E. E., Gaugler, R., & Harrison, R. (1992). Entomopathogenic nematode host finding: response to host contact cues by cruise and ambush foragers. Parasitology, 105, 309–319.

    Article  Google Scholar 

  • MacVean, C. M., Brewer, J. W., & Capinera, J. L. (1982). Field tests of antidesiccants to extend the infection period of an entomogenous nematode, Neoaplectana carpocapsae, against the Colorado potato beetle. Journal of Economic Entomology, 75, 97–101.

    Google Scholar 

  • Patel, M. N., Perry, R. N., & Wright, D. J. (1997). Desiccation survival and water contents of entomopathogenic nematodes, Steinernema spp. (Rhabditida: Steinernematidae). International Journal for Parasitology, 27, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Patel, M. N., & Wright, D. J. (1998). The ultrastructure of the cuticle and sheath of infective juveniles of entomopathogenic nematodes. Journal of Helminthology, 72, 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Salame, L., Glazer, I., Miqaia, N., & Chkhubianishvili, T. (2010). Characterization of new populations of entomopathogenic nematodes isolated at diverse sites across Israel. Phytoparasitica, 38, 39–52.

    Article  Google Scholar 

  • SAS Institute. (2009). JMP Version 8 User’s Guide. Cary, NC, USA: SAS Institute.

    Google Scholar 

  • Segal, D., & Glazer, I. (1998). Genetic approaches for enhancing beneficial traits in entomopathogenic nematodes. Japanese Journal of Nematology, 28, 101–107.

    Google Scholar 

  • Shapiro, D. I., Glazer, I., & Segal, D. (1997). Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biological Control, 8, 153–159.

    Article  Google Scholar 

  • Shapiro-Ilan, D., Gouge, H. D., Piggott, J. S., & Patterson Fife, J. (2006). Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38, 124–133.

    Article  Google Scholar 

  • Solomon, A., Paperna, I., & Glazer, I. (1999). Desiccation survival of the entomopathogenic nematode Steinernema feltiae: Induction of anhydrobiosis. Nematology, 1, 61–68.

    CAS  Google Scholar 

  • Susurluk, A., & Ehlers, R.-U. (2008). Field persistence of the entomopathogenic Heterorhabditis bacteriophora in different crops. Biocontrol, 53, 627–641.

    Article  Google Scholar 

  • Wright, K. A. (1987). The nematode’s cuticle – its surface and the epidermis: Function, homology, analogy – a current consensus. The Journal of Parasitology, 73, 1077–1083.

    Article  CAS  PubMed  Google Scholar 

  • Zitman-Gal, T., Glazer, I., & Koltai, H. (2004). A LEA3 family member is involved in survival of C. elegans during exposure to dehydration stress. FEBS Letters, 577, 21–26.

    Article  Google Scholar 

  • Zitman-Gal, T., Glazer, I., & Koltai, H. (2005). Stressed worms: Responding to the post-genomic era. Molecular and Biochemical Parasitology, 143, 1–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Glazer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salame, L., Glazer, I., Chubinishvilli, M.T. et al. Genetic improvement of the desiccation tolerance and host-seeking ability of the entomopathogenic nematode Steinernema feltiae . Phytoparasitica 38, 359–368 (2010). https://doi.org/10.1007/s12600-010-0106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-010-0106-8

Keywords

Navigation