Skip to main content
Log in

Approximations of Solutions to a Fractional Differential Equation with a Deviating Argument

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In the present study, a fractional order differential equation with deviating argument is considered in a separable Hilbert space \(H\). We will prove the existence and convergence of an approximate solution for the given problem by using the analytic semigroup theory and the fixed point method. Finally, we consider the Faedo-Galerkin approximation of the solution and prove some convergence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miletta, P.D.: Approximation of solutions to evolution equations. Math. Methods Appl. Sci. 17, 753–763 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bahuguna, D., Srivastava, S.K., Singh, S.: Approximations of solutions to semilinear integrodifferential equations. Numer. Funct. Anal. Optim. 22, 487–504 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bahuguna, D., Shukla, R.: Approximations of solutions to nonlinear sobolev type evolution equations. Electron. J. Differ. Equ. 31, 1–16 (2003)

    MathSciNet  Google Scholar 

  4. Bahuguna, D., Muslim, M.: Approximation of solutions to retarded differential equations with applications to population dynamics. J. Appl. Math. Stoc. Anal. 1, 1–11 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bahuguna, D., Muslim, M.: A study of nonlocal history-valued retarded differential equations using analytic semigroups. Nonlinear Dyn. Syst. Theory. 6, 63–75 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Muslim, M.: Approximation of solutions to history-valued neutral functional differential equations. Comput. Math. Appl. 51, 537–550 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Muslim, M., Nandakumaran, A.K.: Existence and approximations of solutions to some fractional order functional integral equations. J. Int. Equ. Appl. 22, 95–114 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Muslim, M., Carlos, C., Nandakumaran, A.K.: Approximation of solutions to fractional integral equation. Comput. Math. Appl. 59, 1236–1244 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. El’sgol’ts, L.E., Norkin, S.B.: Introduction to the Theory of Differential Equations with Deviating Arguments. Academic Press, New York (1973)

    MATH  Google Scholar 

  10. Gal, C.G.: Nonlinear abstract differential equations with deviated argument. J. Math. Anal. Appl. 333, 971–983 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gal, C.G.: Semilinear abstract differential equations with deviated argument. Int. J. Evol. Equ. 2, 381–386 (2008)

    MathSciNet  Google Scholar 

  12. Zhenhai, L., Jitai, L.: A class of boundary value problems for first-order impulsive integro-differential equations with deviating arguments. J. Comput. Appl. Math. 237, 477–486 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Aomar, A., Omar, C., Loubna, M.: Periodic solutions for p-Laplacian neutral functional differential equations with multiple deviating arguments. Electron. J. Differ. Equ. 148, 1–12 (2012)

    Google Scholar 

  14. Stevo, S.: Asymptotically convergent solutions of a system of nonlinear functional differential equations of neutral type with iterated deviating arguments. Appl. Math. Comput. 219, 6197–6203 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Candan, T., Dahiya, R.S.: Existence of nonoscillatory solutions of higher order neutral differential equations with distributed deviating arguments. Math. Slova. 63, 183–190 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Xu, J., Zhou, Z.: Existence and uniqueness of anti-periodic solutions to an nth-order nonlinear differential equation with multiple deviating arguments. Ann. Differ. Equ. 28, 105–114 (2012)

    MathSciNet  Google Scholar 

  17. Tadeusz, J., Robert, J.: Monotone iterative method to second order differential equations with deviating arguments involving Stieltjes integral boundary conditions. Dyn. Syst. Appl. 21, 17–31 (2012)

    MATH  Google Scholar 

  18. Gelfand, I.M., Shilov, G.E.: Generalized Functions, vol. 1. Nauka, Moscow (1959)

    Google Scholar 

  19. Podlubny, I.: Fractional differential equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    Google Scholar 

  20. Lakshmikantham, V., Leela, S., Devi, V.: Theory of Fractional Dynamic Systems. Cambridge Academic, Cambridge (2009)

    MATH  Google Scholar 

  21. El-Borai, M.: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14, 433–440 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 11, 4465–4475 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ahmed, Hamdy M.: Controllability for Sobolev type fractional integro-differential systems in a Banach space. Adv. Differ. Equ. 2012, 1–10 (2012)

    Article  Google Scholar 

  24. Ahmed, Hamdy M.: On some fractional stochastic integrodifferential equations in Hilbert space. Int. J. Math. Math. Sci. 2009, 1–8 (2009)

    Article  Google Scholar 

  25. Wang, Rong N., Chen, De-H, Xiao, Ti-J: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shu, Xiao-B, Lai, Y., Chen, Y.: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. 74, 2003–2011 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. Waves and stability in continuous media (Bologna, 1993), 246251. Ser. Adv. Math. Appl. Sci. 23, 246–251 (1994)

    MathSciNet  Google Scholar 

  28. Mainardi, F.: On a special function arising in the time fractional diffusion-wave equation. Transform methods and special functions, pp. 171–183. Science Culture Technology, Singopore (1994)

    Google Scholar 

  29. Mainardi, F., Mura, A., Pagnini, G.: The functions of the Wright type in fractional calculus. Lecture Notes Semin. Interdiscip. di Math. 09, 111–128 (2010)

    Google Scholar 

  30. Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. Higher transcendental functions and their applications. J. Comput. Appl. Math. 118, 283–299 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mainardi, F., Mura, A., Pagnini, G.: The M-Wright function in time-fractional diffusion processes: a tutorial survey. Int. J. Differ. Equ 38, 1–29 (2010)

    MathSciNet  Google Scholar 

  32. Pollard, H.: The representation of \(e^{-x^\lambda }\) as a Laplace integral. Bull. Am. Math. Soc. 52, 908910 (1946)

    Article  Google Scholar 

  33. El-Borai, M., Abujabal, Hamza A.S.: On the Cauchy problem for some abstract nonlinear differential equations. Korean J. Comput. Appl. Math. 3, 279–290 (1996)

    MathSciNet  Google Scholar 

  34. Debbouche, A., Baleanu, D.: Nonlocal nonlinear integrodifferential equations of fractional orders. Bound. Value Probl. 2012, 1–10 (2012)

    Article  MathSciNet  Google Scholar 

  35. Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62, 1451–1459 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  37. Matar, M.: Controllability of fractional semilinear mixed Volterra-Fredholm integrodifferential equations with nonlocal conditions. Int. J. Math. Anal. 4, 1105–1116 (2010)

    MATH  MathSciNet  Google Scholar 

  38. El-Borai, M., Debbouche, A.: Almost periodic solutions of some nonlinear fractional differential equations. Int. J. Contemp. Math. Sci. 4, 1373–1387 (2009)

    MATH  MathSciNet  Google Scholar 

  39. Kumar, S., Sukavanam, N.: Approximate controllability of fractional order neutral control systems with delay. Int. J. Nonlinear Sci. 13, 454–462 (2012)

    MathSciNet  Google Scholar 

  40. Wang, J.R., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, 262–272 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We highly appreciate the valuable suggestions and comments of the referees on our manuscript which helped to considerably improve the quality of the manuscript. The third author would like to acknowledge the financial aid from the Department of Science and Technology, New Delhi, under its research project SR/S4/MS:796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Pandey, D.N. & Bahuguna, D. Approximations of Solutions to a Fractional Differential Equation with a Deviating Argument. Differ Equ Dyn Syst 22, 333–352 (2014). https://doi.org/10.1007/s12591-013-0188-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-013-0188-0

Keywords

AMS Subject Classification

Navigation