Skip to main content

Advertisement

Log in

Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

A number of factors can lead to bone disorders such as osteoporosis, in which the balance of bone resorption vs. bone formation is upset (i.e., more bone is resorbed than is formed). The result is a loss of bone mass, with a concomitant decrease in bone density. Drugs for osteoporosis can be broadly classified as “bone resorption inhibitors”, which impede bone resorption by osteoclasts, and “bone formation accelerators”, which augment bone formation by osteoblasts. Here, we describe representative drugs in each class, i.e., the bisphosphonates and the parathyroid hormone. In addition, we introduce two novel bone formation accelerators, SST-VEDI and SSH-BMI, which are currently under investigation by our research group. On the other hand, regenerative therapy, characterized by (ideally) the use of a patient’s own cells to regenerate lost tissue, is now a matter of global interest. At present, candidate cell sources for regenerative therapy include embryonic stem cells (created from embryos based on the fertilization of oocytes), induced pluripotent stem cells (created artificially by using somatic cells as the starting material), and somatic stem cells (found in the tissues of the adult body). This review summarizes the identifying features and the therapeutic potential of each of these stem cell types for bone regenerative medicine. Although a number of different kinds of somatic stem cells have been reported, we turn our attention toward two that are of particular interest for prospective applications in bone repair: the dedifferentiated fat cell, and the deciduous dental pulp-derived stem cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagan J, Scully C, Sabater V, Jimenez Y (2009) Osteonecrosis of the jaws in patients treated with intravenous bisphosphonates (BRONJ): a concise update. Oral Oncol 45:301–308

    Article  PubMed  Google Scholar 

  • Bereither-Hahn J, Zylberberg L (1993) Regeneration of teleost fish scale. Comp Biochem Physiol 105A:625–664

    Article  Google Scholar 

  • Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann NY Acad Sci 1106:262–271

    Article  PubMed  Google Scholar 

  • Chavez D, Acevedo LA, Mata R (1999) Isolation of tryptamine derived amides from Rollinia mucosa. J Nat Prod 62:1119–1122

    Article  CAS  PubMed  Google Scholar 

  • Drake MT, Srinivasan B, Mödder UI, Ng AC, Undale AH, Roforth MM, Peterson JM, McCready LK, Riggs BL, Khosla S (2011) Effects of intermittent parathyroid hormone treatment on osteoprogenitor cells in postmenopausal women. Bone 49:349–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esbrit P, Alcaraz MJ (2013) Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochem Pharmacol 85:1417–1423

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarocha D, Lukasiewicz E, Majka M (2008) Advantage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105+ and CD271+ cells. Folia Histochem Cytobiol 46:307–314

    CAS  PubMed  Google Scholar 

  • Jumabay M, Matsumoto T, Yokoyama SI, Kano K, Masuko T, Mitsumata M, Saito S, Hirayama A, Mugishima H, Fukuda N (2009) Dedifferentiated fat cells convert to cardiomyocytes phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol 47:565–575

    Article  CAS  PubMed  Google Scholar 

  • Kazama T, Fujie M, Endo T, Kano K (2008) Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochem Biophys Res Commun 377:780–785

    Article  CAS  PubMed  Google Scholar 

  • Kikuiri T, Kim I, Yamaza T, Akiyama K, Zhang Q, Li Y, Chen C, Chen W, Wang S, Le AD, Shi S (2010) Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J Bone Miner Res 25:1668–1679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komrakova M, Stuermer EK, Werner C, Wicke M, Kolios L, Sehmisch S, Tezval M, Daub F, Martens T, Witzenhausen P, Dullin C, Stuermer KM (2010) Effect of human parathyroid hormone hPTH (1–34) applied at different regimes on fracture healing and muscle in ovariectomized and healthy rats. Bone 47:480–492

    Article  CAS  PubMed  Google Scholar 

  • Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873

    Article  CAS  PubMed  Google Scholar 

  • Lambrinoudaki I, Christodoulakos G, Botsis D (2006) Bisphosphonates. Ann NY Acad Sci 1092:397–402

    Article  CAS  PubMed  Google Scholar 

  • Lippuner K (2012) The future of osteoporosis treatment: a research update. Swiss Med Wkly 142:w13624

    PubMed  Google Scholar 

  • Lombardi G, Di Somma C, Rubino M, Faggiano A, Vuolo L, Guerra E, Contaldi P, Savastano S, Colao A (2011) The roles of parathyroid hormone in bone remodeling: prospects for novel therapeutics. J Endocrinol Invest 34:18–22

    CAS  PubMed  Google Scholar 

  • Lowe H, McMahon DJ, Rubin MR, Bilezikian JP, Silverberg SJ (2007) Normocalcemic primary hyperparathyroidism: further characterization of a new clinical phenotype. J Clin Endocrinol Metab 92:3001–3005

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Kano K, Kondo D, Iribe Y, Tanaka T, Matsubara Y, Sakuma T, Fukuda N, Satomi A, Otaki M, Ryu J, Mugishima H (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222

    Article  CAS  PubMed  Google Scholar 

  • McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK, Lewiecki EM (2013) Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med 126:13–20

    Article  CAS  PubMed  Google Scholar 

  • Mikami Y, Somei M, Takagi M (2009) A tryptamine derivative, SST-VEDI-1, inhibits apoptosis and stimulates mineralization in osteoblasts. Endocr J 56:665–678

    Article  CAS  PubMed  Google Scholar 

  • Mikami Y, Somei M, Tsuda M (2011a) SSH-BM-I, a tryptamine derivative, stimulates mineralization in terminal osteoblast differentiation but inhibits osteogenesis of pre-committed progenitor cells. J Pharmacol Sci 18:63–72

    Article  Google Scholar 

  • Mikami Y, Senoo M, Lee M, Yamada K, Ochiai K, Honda MJ, Watanabe E, Watanabe N, Somei M, Takagi M (2011b) Inhibitory effects of a tryptamine derivative on ultraviolet radiation-induced apoptosis in MC3T3-E1 mouse osteoblasts. J Pharmacol Sci 115:214–220

    Article  CAS  PubMed  Google Scholar 

  • Mikami Y, Ishii Y, Watanabe N, Shirakawa T, Suzuki S, Irie S, Isokawa K, Honda MJ (2011c) CD271/p75(NTR) inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells Dev 20:901–913

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morley P, Whitfield JF, Willick GE (2001) Parathyroid hormone: an anabolic treatment for osteoporosis. Curr Pharm Des 7:671–687

    Article  CAS  PubMed  Google Scholar 

  • Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 23(17):1473–1480

    Article  Google Scholar 

  • Nur R, Fukuda N, Matsumoto T, Medet J, Kano K, Yamamoto C, Maruyama T, Endo M, Matumoto K (2008) Implantation of dedifferentiated fat cells ameliorates Habu Snake venom-induced chronic renal dysfunction in tenascin-C-deficient mice. Nephron Exp Nephrol 110:e91–e98

    Article  PubMed  Google Scholar 

  • Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Matsumoto T, Kano K, Mugishima H, Okano H, Igarashi R (2008) Mature adipocyte-derived cells, DFAT (de-differentiated fat cells) promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transpl 17:877–886

    Article  Google Scholar 

  • Oki Y, Watanabe S, Endo T, Kano K (2008) Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid. Cell Struct Funct 33:211–222

    Article  CAS  PubMed  Google Scholar 

  • Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791

    Article  CAS  PubMed  Google Scholar 

  • Rizzoli R, Reginster JY (2011) Adverse drug reactions to osteoporosis treatments. Expert Rev Clin Pharmacol 4(5):593–604

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero SL, Mehrotra B (2009) Bisphosphonate-related osteonecrosis of the jaw: diagnosis, prevention, and management. Annu Rev Med 60:85–96

    Article  CAS  PubMed  Google Scholar 

  • Sakuma T, Matsumoto T, Kano K, Fukuda N, Obinata D, Yamaguchi K, Yoshida T, Takahashi S, Mugishima H (2009) Mature adipocyte derived dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J Urol 182:355–365

    Article  PubMed  Google Scholar 

  • Schaffler MB, Kennedy OD (2012) Osteocyte signaling in bone. Curr Osteoporos Rep 10:118–125

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Article  CAS  PubMed  Google Scholar 

  • Somei M (2004) Definitions of IPF and APF. Heterocycles 64:483

    Article  CAS  Google Scholar 

  • Somei M, Iwaki T, Yamada F, Tanaka Y, Shigenobu K, Koike K, Suzuki N, Hattori A (2006) The ideal synthetic method aimed at the leads for an a2-BLOCKR, an inhibitor of blood platelet aggregation, and an anti-osteoporosis agent. Heterocycles 68:1565–1569

    Article  CAS  Google Scholar 

  • Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA (2010) Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int 21:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Somei M, Kitamura K, Reiter RJ, Hattori A (2008) Novel bromomelatonin derivatives suppress osteoclastic activity and increase osteoblastic activity: implications for the treatment of bone diseases. J Pineal Res 44:326–334

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Hirano T, Yamada J (1989) Scale regeneration of tilapia (Oreochromis miloticus) under various ambient and dietary calcium concentrations. Comp Biochem Physiol 92A:605–608

    CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki N, Takahashi K, Tanaka T, Ichisaka T, Aoki H, Takeda-Kawaguchi T, Iida K, Kunisada T, Shibata T, Yamanaka S, Tezuka K (2010) Dental pulp cells for induced pluripotent stem cell banking. J Dent Res 89:773–778

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Vitale AM, Wolvetang E, Mackay-Sim A (2011) Induced pluripotent stem cells: a new technology to study human diseases. Int J Biochem Cell Biol 43:843–846

    Article  CAS  PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

  • Yagi K, Kondo D, Okazaki Y, Kano K (2004) A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun 321:967–974

    Article  CAS  PubMed  Google Scholar 

  • Yamada J (1971) A fine structural aspect of the development of scales in chum salmon fry. Bull Jap Soc Sci Fish 37:18–29

    Article  Google Scholar 

  • Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Shang B, Yang P, Cao Z, Pan Y, Zhou Q (2011) Induced pluripotent stem (iPS) cell consensus genes: implication for the risk of tumorigenesis and cancers in iPS cell therapy. Stem Cells Dev 21:955–964

    Article  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from A-STEP; Adaptable and Seamless Technology Transfer Program through target-driven R&D (Exploratory Research).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Mikami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikami, Y., Matsumoto, T., Kano, K. et al. Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine. Anat Sci Int 89, 1–10 (2014). https://doi.org/10.1007/s12565-013-0208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-013-0208-8

Keywords

Navigation