Skip to main content

Advertisement

Log in

Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The early Eocene fossil localities of the Okanagan Highlands in British Columbia, Canada, and Washington State, USA, span the Early Eocene Climatic Optimum, the warmest period of the Cenozoic, and reflect mild but equable upland climates (mean annual temperature <15°C, cold month mean temperature >0°C). The Okanagan Highlands region has been identified as a centre of temperate plant family diversification in the northern hemisphere during the early Eocene. Here, we test the hypothesis of mid-latitude high diversity through rarefaction analysis of unbiased census collections from the Okanagan Highlands Falkland fossil locality, demonstrating levels of diversity similar to those documented at hyperdiverse Eocene sites in South America when adjusted for sample size. An explanation for this diversity may lie in the upland character of the Falkland site, as altitudinal gradients provide a mosaic of microhabitats through interacting effects of topography and climate. Fine-scale trends are also examined within the Falkland site, demonstrating a shift in plant community composition over time to a more diverse flora, although the dominant taxa persist through the section in varying levels of abundance. Intra-site patterns in plant community structure and composition are attributed to a combination of environmental factors, including disturbance and microhabitat diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Archibald SB, Farrell BD (2003) Wheeler’s dilemma. Acta Zoöl Cracoviensia 46[suppl]:19–23

    Google Scholar 

  • Archibald SB, Greenwood DR (2005) The Okanagan Highlands: Eocene biota, environments, and geological setting, southern British Columbia, Canada and northeastern Washington, USA. Can J Earth Sci 42:111–114

    Article  Google Scholar 

  • Archibald SB, Mathewes RW (2000) Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Can J Zool 78:1441–1462

    Article  Google Scholar 

  • Archibald SB, Bossert WH, Greenwood DR, Farrell BD (2010) Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36:374–398

    Article  Google Scholar 

  • Barton DG (1998) Microstratigraphic variation in preservational patterns and meristic counts of Amyzon aggregatum (Teleostei: Catostomidae) from a 10,000-year interval of the Eocene varved lake deposits of Horsefly. PhD thesis. University of Alberta, Edmonton, Alberta

    Google Scholar 

  • Burnham RJ (1989) Relationships between standing vegetation and leaf litter in a paratropical forest: implications for Paleobotany. Rev Palaeobot Palynol 58:5–32

    Article  Google Scholar 

  • Crane PR, Stockey RA (1985) Growth and reproductive biology of Joffrea speirsii gen. et sp. nov., a Cercidiphyllum-like plant from the late Paleocene of Alberta, Canada. Can J Bot 63:340–364

    Article  Google Scholar 

  • Crane PR, Stockey RA (1987) Betula leaves and reproductive structures from the Middle Eocene of British Columbia, Canada. Can J Bot 65:2490–2500

    Article  Google Scholar 

  • del Moral R, Grishin SY (1999) Volcanic disturbances and ecosystem recovery. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 137–160

    Google Scholar 

  • del Moral R, Wood DM (1993) Early primary succession on a barren volcanic plain at Mount St. Helens, Washington. Am J Bot 80:981–991

    Article  Google Scholar 

  • Denk T, Dillhoff RM (2005) Ulmus leaves and fruits from the Early-Middle Eocene of northwestern North America: systematics and implications for character evolution within Ulmaceae. Can J Bot 83:1663–1681

    Article  Google Scholar 

  • DeVore ML, Pigg KB (2007) A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Syst Evol 266:45–57

    Article  Google Scholar 

  • DeVore ML, Pigg KB (2010) Floristic composition and comparison of middle Eocene to late Eocene and Oligocene floras in North America. Bull Geosci 85:51–74

    Google Scholar 

  • DeVore ML, Pigg KB, Wehr WC (2005) Systematics and phytogeography of selected Eocene Okanagan Highlands plants. Can J Earth Sci 42:205–214

    Article  Google Scholar 

  • Ellis B, Douglas CD, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press and The New York Botanical Garden, Ithaca

    Google Scholar 

  • Graham A (2011) The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. Am J Bot 98:336–351

    Article  Google Scholar 

  • Greenwood DR (1992) Taphonomic constraints on foliar physiognomic interpretations of Late Cretaceous and Tertiary palaeoclimates. Rev Palaeobot Palynol 71:149–190

    Article  Google Scholar 

  • Greenwood DR, Basinger JF (1993) Stratigraphy and floristics of Eocene swamp forests from Axel Heiberg Island, Canadian Arctic Archipelago. Can J Earth Sci 30:1913–1923

    Article  Google Scholar 

  • Greenwood DR, Wing SL (1995) Eocene continental climates and latitudinal temperature gradients. Geology 23:1044–1048

    Article  Google Scholar 

  • Greenwood DR, Archibald SB, Mathewes RW, Moss PT (2005) Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Can J Earth Sci 42:167–185

    Article  Google Scholar 

  • Greenwood DR, Basinger JF, Smith RY (2010) How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology 38:15–18

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harrington GJ (2004) Structure of the North American vegetation gradient during the late Paleocene/early Eocene warm climate. Evol Ecol Res 6:33–48

    Google Scholar 

  • Harris J, Van Couvering J (1995) Mock aridity and the paleoecology of volcanically influenced ecosystems. Geology 23:593–596

    Article  Google Scholar 

  • Hutcheson K (1970) A test for comparing diversities based on the Shannon formula. J Theor Biol 29:151–154

    Article  Google Scholar 

  • Iglesias A, Wilf P, Johnson KR, Zamuner AB, Cúneo NR, Matheos SD, Singer BS (2007) A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogs. Geology 35:947–950

    Article  Google Scholar 

  • Jaramillo CA (2002) Response of tropical vegetation to Paleogene warming. Paleobiology 28:222–243

    Article  Google Scholar 

  • Jaramillo CA, Dilcher DL (2000) Microfloral diversity patterns of the late Paleocene–Eocene interval in Colombia, northern South America. Geology 28:815–818

    Article  Google Scholar 

  • Johnson KR, Ellis B (2002) A tropical rainforest in Colorado1.4 million years after the Cretaceous–Tertiary boundary. Science 296:2379–2383

    Article  Google Scholar 

  • Johnson KR, Reynolds ML, Werth KW, Thomasson JR (2003) Overview of the Late Cretaceous, early Paleocene, and early Eocene megafloras of the Denver Basin, Colorado. Rocky Mt Geol 38:101–120

    Article  Google Scholar 

  • Jolley DW, Widdowson M, Self S (2008) Volcanogenic nutrient fluxes and plant ecosystems in large igneous provinces: an example from the Columbia River Basalt Group. J Geol Soc [London] 165:955–966

    Article  Google Scholar 

  • Killeen TJ, Solórzano LA (2008) Conservation strategies to mitigate impacts from climate change in Amazonia. Phil Trans R Soc B 363:1881–1888

    Article  Google Scholar 

  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio 13:11–17

    Google Scholar 

  • Madsen JE, Øllgaard B (1994) Floristic composition, structure and dynamics of an upper montane rain forest in Southern Ecuador. Nord J Bot 14:403–423

    Article  Google Scholar 

  • Manchester SR, Dillhoff RM (2004) Fagus (Fagaceae) fruits, foliage, and pollen from the Middle Eocene of Pacific Northwestern North America. Can J Bot 82:1509–1517

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Molau U (2004) Mountain biodiversity patterns at low and high latitudes. Ambio 13:24–28

    Google Scholar 

  • Moss PT, Greenwood DR, Archibald SB (2005) Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia–Washington State) from palynology. Can J Earth Sci 42:187–204

    Article  Google Scholar 

  • Passmore SM, Johnson KR, Reynolds M, Scott M, Meade-Hunter D (2002) Through the Quaternary looking glass; the middle Eocene Republic flora over short timescales. Geol Soc Am Abstr Programs 34(6):556

    Google Scholar 

  • Peppe DJ (2010) Megafloral change in the early and middle Paleocene in the Williston Basin, North Dakota, USA. Palaeogr Palaeoclimatol Palaeoecol 298:224–234

    Article  Google Scholar 

  • Peppe DJ, Hickey LJ, Miller IM, Green WA (2008) A morphotype catalogue, floristic analysis and stratigraphic description of the Aspen Shale flora (Cretaceous–Albian) of southwestern Wyoming. Bull Peabody Mus Nat Hist 49:181–208

    Article  Google Scholar 

  • Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, Iglesias A, Jaramillo CA, Johnson KR, Jordan GJ, Kraft NJB, Lovelock EC, Lusk CH, Niinemets Ü, Peñuelas J, Rapson G, Wing SL, Wright IJ (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol 190:724–739

    Article  Google Scholar 

  • Pigg KB, DeVore ML (2010) Floristic composition and variation in late Paleocene to early Eocene floras in North America. Bull Geosci 85:135–154

    Article  Google Scholar 

  • Pigg KB, Wehr WC, Ickert-Bond SM (2001) Trochodendron and Nordenskioldia (Trochodendraceae) from the middle Eocene of Washington State, U.S.A. Int J Plant Sci 162:1187–1198

    Article  Google Scholar 

  • Pigg KB, Manchester SR, Wehr WC (2003) Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby formations of northwestern North America. Int J Plant Sci 164:807–822

    Article  Google Scholar 

  • Pigg KB, Dillhoff RM, DeVore ML, Wehr WC (2007) New diversity among the Trochodendraceae from the early/middle Eocene Okanogan Highlands of British Columbia, Canada, and northeastern Washington State, United States. Int J Plant Sci 168:521–532

    Article  Google Scholar 

  • Radtke MG, Pigg KB, Wehr WC (2005) Fossil Corylopsis and Fothergilla leaves (Hamamelidaceae) from the lower Eocene flora of Republic, Washington, U.S.A., and their evolutionary and biogeographic significance. Int J Plant Sci 166:347–356

    Article  Google Scholar 

  • Rose PJ, Fox DL, Marcot J, Badgley C (2011) Flat latitudinal gradient in Paleocene mammal richness suggests decoupling of climate and biodiversity. Geology 39:163–166

    Article  Google Scholar 

  • Royer DL (2008) Linkages between CO2, climate, and evolution in deep time. Proc Natl Acad Sci USA 105:407–108

    Article  Google Scholar 

  • Schorn HE, Wehr WC (1986) Abies milleri, sp. nov., from the middle Eocene Klondike Mountain Formation, Republic, Ferry County, Washington. Burke Mus Contrib Anthropol Nat Hist 1:7

    Google Scholar 

  • Shellito CJ, Sloan LC (2006) Reconstructing a lost Eocene paradise: Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum. Glob Planet Change 50:1–17

    Article  Google Scholar 

  • Smith RY, Basinger JF, Greenwood DR (2009) Depositional setting, fossil flora, and paleoenvironment of the early Eocene Falkland site, Okanagan Highlands, British Columbia. Can J Earth Sci 46:811–822

    Article  Google Scholar 

  • Smith RY, Greenwood DR, Basinger JF (2010) Estimating paleoatmospheric pCO2 during the Early Eocene Climatic Optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogr Palaeoclimatol Palaeoecol 293:120–131

    Article  Google Scholar 

  • Steart DC, Boon PI, Greenwood DR, Diamond NT (2002) Transport of leaf litter in upland streams of south-eastern Australian Eucalyptus and Nothofagus forests. Arch Hydrobiol 156(1):43–61

    Article  Google Scholar 

  • Steart DC, Greenwood DR, Boon PI (2009) The chemical constraints upon leaf decay rates: Taphonomic implications among leaf species in Australian terrestrial and aquatic environments. Rev Palaeobot Palynol 157:358–374

    Article  Google Scholar 

  • Tribe S (2005) Eocene paleo-physiography and drainage directions, southern interior plateau, British Columbia. Can J Earth Sci 42:215–230

    Article  Google Scholar 

  • Vavrek MJ, Larson HCE (2010) Low beta diversity of Maastrichtian dinosaurs of North America. Proc Natl Acad Sci USA 107:8265–8268

    Article  Google Scholar 

  • Wehr WC (1995) Early Tertiary flowers, fruits, and seeds from Washington State and adjacent areas. Wash Geol 23(3):3–16

    Google Scholar 

  • Wehr WC (1998) Middle Eocene insects and plants of the Okanagan Highlands. In: Mallory VS (ed) Contributions to the paleontology and geology of the West Coast, vol 6. Seattle Burke Museum and University of Washington Press, Seattle, pp 99–109

    Google Scholar 

  • Wehr WC, Hopkins DQ (1994) The Eocene orchards and gardens of Republic, Washington. Wash Geol 22(3):27–34

    Google Scholar 

  • Wilf P (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373–390

    Google Scholar 

  • Wilf P, Wing SL, Greenwood DR, Greenwood CL (1998) Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26:203–206

    Article  Google Scholar 

  • Wilf P, Cúneo NR, Johnson KR, Hicks JF, Wing SL, Obradovich JD (2003) High plant diversity in Eocene South America: evidence from Patagonia. Science 300:122–125

    Article  Google Scholar 

  • Wilf P, Johnson KR, Cúneo NR, Smith ME, Singer BS, Gandolfo MA (2005) Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. Am Nat 165:634–650

    Article  Google Scholar 

  • Wing SL, Greenwood DR (1993) Fossils and fossil climates: the case for equable continental interiors in the Eocene. Phil Trans R Soc B 341:243–253

    Article  Google Scholar 

  • Wing SL, Brown TM, Obradovich JD (1991) Early Eocene biotic and climatic change in interior western North America. Geology 19:1189–1192

    Article  Google Scholar 

  • Wing SL, Alroy J, Hickey LJ (1995) Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeogr Palaeoclimatol Palaeoecol 115:117–155

    Article  Google Scholar 

  • Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilf P, Labandeira CA (2009) Late Paleocene fossil from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proc Natl Acad Sci USA 106:18627–18632

    Article  Google Scholar 

  • Wolfe JA (1987) An overview of the origins of the modern vegetation and flora of the northern Rocky Mountains. Ann Mo Bot Gard 74:785–803

    Article  Google Scholar 

  • Wolfe JA, Wehr WC (1987) Middle Eocene dicotyledonous plants from Republic, northeastern Washington. US Geol Surv Bull 1597

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This paper derives from a PhD thesis by RYS, supported through a Canada Graduate Scholarship to RYS from the Natural Science and Engineering Research Council of Canada (NSERC), and NSERC Discovery grants to DRG (DG 311934) and JFB (DG 1334). The authors would like to thank R. Wilson, B. Wilson, H. Wilson, S. Krasowski, K. Stouffer, J. Walberg and L. Johnson for assistance in the field. Thanks are extended to our colleagues S.B. Archibald, P.T. Moss, and R.W. Mathewes for helpful discussions regarding the fossil biota of the site. The authors thank P. Wilf and K. Johnson for sharing raw abundance data for Republic dicot specimens. R. Hebda and J. Kerik at the Royal British Columbia Museum were helpful in obtaining permission to collect at Falkland. We thank D. Peppe and two anonymous reviewers for constructive comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Y. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 10133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R.Y., Basinger, J.F. & Greenwood, D.R. Early Eocene plant diversity and dynamics in the Falkland flora, Okanagan Highlands, British Columbia, Canada. Palaeobio Palaeoenv 92, 309–328 (2012). https://doi.org/10.1007/s12549-011-0061-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-011-0061-5

Keywords

Navigation