Skip to main content
Log in

Characteristics of High-Risk Plaques as Identified on Coronary Computed Tomography Angiography

  • Cardiac Computed Tomography (TC Villines and S Achenbach, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Computed tomography (CT) is a non-invasive imaging technique that permits the assessment of coronary arteries for the presence of stenosis and plaque. Improved image quality with the newest CT technology has resulted in the ability to perform detailed analysis of coronary atherosclerotic plaque. Multiple cross-sectional studies described morphologic features of plaques associated with acute coronary syndrome. Further, the prognostic value of coronary plaque characteristics for the prediction of future cardiovascular events has been explored. In this article, we review the available literature on characteristics of high-risk plaques as identified by coronary CT angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Meijboom WB, Meijs MFL, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–44.

    Article  PubMed  Google Scholar 

  2. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.

    Article  PubMed  CAS  Google Scholar 

  3. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  4. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109(1):14–7.

    Article  PubMed  Google Scholar 

  5. Leber AW, Becker A, Knez A, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47(3):672–7.

    Article  PubMed  Google Scholar 

  6. •• Voros S, Rinehart S, Qian Z, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging. 2011;4(5):537–48. An excellent systematic review and meta-analysis on coronary CTA detection, quantification and characterization of coronary plaque.

    Article  PubMed  Google Scholar 

  7. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    Article  PubMed  CAS  Google Scholar 

  8. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105(8):939–43.

    Article  PubMed  Google Scholar 

  9. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.

    Article  PubMed  CAS  Google Scholar 

  10. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336(18):1276–82.

    Article  PubMed  CAS  Google Scholar 

  11. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz. 2001;26(4):239–44.

    Article  PubMed  CAS  Google Scholar 

  12. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.

    Article  PubMed  CAS  Google Scholar 

  13. Kotani J-I, Mintz GS, Castagna MT, et al. Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation. 2003;107(23):2889–93.

    Article  PubMed  Google Scholar 

  14. Hong M-K, Mintz GS, Lee CW, et al. Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a three-vessel intravascular ultrasound study in 235 patients. Circulation. 2004;110(8):928–33.

    Article  PubMed  Google Scholar 

  15. Hong M-K, Mintz GS, Lee CW, et al. Comparison of virtual histology to intravascular ultrasound of culprit coronary lesions in acute coronary syndrome and target coronary lesions in stable angina pectoris. Am J Cardiol. 2007;100(6):953–9.

    Article  PubMed  Google Scholar 

  16. Fujii K, Carlier SG, Mintz GS, et al. Association of plaque characterization by intravascular ultrasound virtual histology and arterial remodeling. Am J Cardiol. 2005;96(11):1476–83.

    Article  PubMed  Google Scholar 

  17. Pundziute G, Schuijf JD, Jukema JW, et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur Heart J. 2008;29(19):2373–81.

    Article  PubMed  Google Scholar 

  18. Raffel OC, Akasaka T, Jang I-K. Cardiac optical coherence tomography. Heart. 2008;94(9):1200–10.

    Article  PubMed  CAS  Google Scholar 

  19. Yamagishi M, Terashima M, Awano K, et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol. 2000;35(1):106–11.

    Article  PubMed  CAS  Google Scholar 

  20. Uchida Y, Nakamura F, Tomaru T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J. 1995;130(2):195–203.

    Article  PubMed  CAS  Google Scholar 

  21. •• Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35. The largest prospective study of coronary plaque characteristics as detected by VH-IVUS in patients with ACS and followed for 3.4 years. The study showed that nonculprit lesions associated with recurrent events were characterized by a larger plaque burden, a smaller minimal luminal area or to be classified as TCFA.

    Article  PubMed  CAS  Google Scholar 

  22. Mollet NR, Cademartiri F, Nieman K, et al. Noninvasive assessment of coronary plaque burden using multislice computed tomography. Am J Cardiol. 2005;95(10):1165–9.

    Article  PubMed  Google Scholar 

  23. Leber AW, Knez A, White CW, et al. Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol. 2003;91(6):714–8.

    Article  PubMed  Google Scholar 

  24. Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46(1):147–54.

    Article  PubMed  Google Scholar 

  25. Moselewski F, Ropers D, Pohle K, et al. Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am J Cardiol. 2004;94(10):1294–7.

    Article  PubMed  Google Scholar 

  26. • Schepis T, Marwan M, Pflederer T, et al. Quantification of non-calcified coronary atherosclerotic plaques with dual-source computed tomography: comparison with intravascular ultrasound. Heart. 2010;96(8):610–5. A recent study demonstrating good correlation between CT and IVUS for coronary plaque quantification with the modern scanner.

    Article  PubMed  Google Scholar 

  27. Brodoefel H, Burgstahler C, Sabir A, et al. Coronary plaque quantification by voxel analysis: dual-source MDCT angiography versus intravascular sonography. AJR Am J Roentgenol. 2009;192(3):W84–9.

    Article  PubMed  Google Scholar 

  28. Voros S, Rinehart S, Qian Z, et al. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. JACC Cardiovasc Interv. 2011;4(2):198–208.

    Article  PubMed  Google Scholar 

  29. Boogers MJ, Broersen A, van Velzen JE, et al. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J. 2012;33(8):1007–16.

    Article  PubMed  Google Scholar 

  30. Meijs MFL, Meijboom WB, Bots ML, et al. Comparison of frequency of calcified versus non-calcified coronary lesions by computed tomographic angiography in patients with stable versus unstable angina pectoris. Am J Cardiol. 2009;104(3):305–11.

    Article  PubMed  CAS  Google Scholar 

  31. •• Pflederer T, Marwan M, Schepis T, et al. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis. 2010;211(2):437–44. The largest study of high-risk plaque features as detected by CT in ACS and SAP patients.

    Article  PubMed  CAS  Google Scholar 

  32. • Ferencik M, Schlett CL, Ghoshhajra BB, et al. A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. Am J Cardiol 2012. (epub). A substudy from the ROMICAT trial that showed the good performance of CT-based score created from high-risk plaque features in diagnosis in ACS.

  33. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47(8):1655–62.

    Article  PubMed  Google Scholar 

  34. Kashiwagi M, Tanaka A, Kitabata H, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2(12):1412–9.

    Article  PubMed  Google Scholar 

  35. Kim SY, Kim K-S, Seung MJ, et al. The culprit lesion score on multi-detector computed tomography can detect vulnerable coronary artery plaque. Int J Cardiovasc Imaging. 2010;26 Suppl 2:245–52.

    Article  PubMed  Google Scholar 

  36. Rinehart S, Vazquez G, Qian Z, Murrieta L, Christian K, Voros S. Quantitative measurements of coronary arterial stenosis, plaque geometry, and composition are highly reproducible with a standardized coronary arterial computed tomographic approach in high-quality CT datasets. J Cardiovasc Comput Tomogr. 2011;5(1):35–43.

    Article  PubMed  Google Scholar 

  37. Pundziute G, Schuijf JD, Jukema JW, et al. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc Interv. 2008;1(2):176–82.

    Article  PubMed  Google Scholar 

  38. Pohle K, Achenbach S, Macneill B, et al. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 2007;190(1):174–80.

    Article  PubMed  CAS  Google Scholar 

  39. Carrascosa PM, Capuñay CM, Garcia-Merletti P, Carrascosa J, Garcia MF. Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am J Cardiol. 2006;97(5):598–602.

    Article  PubMed  Google Scholar 

  40. Ito T, Terashima M, Kaneda H, et al. Comparison of in vivo assessment of vulnerable plaque by 64-slice multislice computed tomography versus optical coherence tomography. Am J Cardiol. 2011;107(9):1270–7.

    Article  PubMed  Google Scholar 

  41. Suzuki S, Furui S, Kuwahara S, et al. Accuracy of attenuation measurement of vascular wall in vitro on computed tomography angiography: Effect of wall thickness, density of contrast medium, and measurement point. Invest Radiol. 2006;41(6):510–5.

    Article  PubMed  Google Scholar 

  42. Cademartiri F, Mollet NR, Runza G, et al. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol. 2005;15(7):1426–31.

    Article  PubMed  Google Scholar 

  43. Ferencik M, Chan RC, Achenbach S, et al. Arterial wall imaging: evaluation with 16-section multidetector CT in blood vessel phantoms and ex vivo coronary arteries. Radiology. 2006;240(3):708–16.

    Article  PubMed  Google Scholar 

  44. Achenbach S, Boehmer K, Pflederer T, et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr. 2010;4(2):110–5.

    Article  PubMed  Google Scholar 

  45. • Marwan M, Taher MA, Meniawy El K, et al. In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS. Atherosclerosis. 2011;215(1):110–5. This study describes a novel approach to the assessment of non-calcified plaque composition using quantitative histogram analysis. This and similar approaches hold promise for better discrimination of lipid-rich and fibrous coronary plaques.

    Article  PubMed  CAS  Google Scholar 

  46. Kitagawa T, Yamamoto H, Horiguchi J, et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging. 2009;2(2):153–60.

    Article  PubMed  Google Scholar 

  47. van Velzen JE, de Graaf FR, Jukema JW, et al. Comparison of the relation between the calcium score and plaque characteristics in patients with acute coronary syndrome versus patients with stable coronary artery disease, assessed by computed tomography angiography and virtual histology intravascular ultrasound. Am J Cardiol. 2011;108(5):658–64.

    Article  PubMed  Google Scholar 

  48. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50(4):319–26.

    Article  PubMed  Google Scholar 

  49. Ozaki Y, Okumura M, Ismail TF, et al. Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur Heart J. 2011;32(22):2814–23.

    Article  PubMed  Google Scholar 

  50. Nakazawa G, Tanabe K, Onuma Y, et al. Efficacy of culprit plaque assessment by 64-slice multidetector computed tomography to predict transient no-reflow phenomenon during percutaneous coronary intervention. Am Heart J. 2008;155(6):1150–7.

    Article  PubMed  Google Scholar 

  51. Marwan M, Pflederer T, Schepis T, et al. Coronary vessel and luminal area measurement using dual-source computed tomography in comparison with intravascular ultrasound. J Comput Assist Tomogr. 2011;35(1):113–8.

    Article  PubMed  Google Scholar 

  52. Achenbach S, Ropers D, Hoffmann U, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43(5):842–7.

    Article  PubMed  Google Scholar 

  53. • Gauss S, Achenbach S, Pflederer T, Schuhbäck A, Daniel WG, Marwan M. Assessment of coronary artery remodelling by dual-source CT: a head-to-head comparison with intravascular ultrasound. Heart. 2011;97(12):991–7. A recent study describing the assessment and measurement of remodeling index in CT with correalation to IVUS.

    Article  PubMed  Google Scholar 

  54. Kröner ESJ, van Velzen JE, Boogers MJ, et al. Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol. 2011;107(12):1725–9.

    Article  PubMed  Google Scholar 

  55. Beckman JA, Ganz J, Creager MA, Ganz P, Kinlay S. Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol. 2001;21(10):1618–22.

    Article  PubMed  CAS  Google Scholar 

  56. Ehara S, Kobayashi Y, Yoshiyama M, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110(22):3424–9.

    Article  PubMed  Google Scholar 

  57. van der Hoeven BL, Liem S-S, Oemrawsingh PV, et al. Role of calcified spots detected by intravascular ultrasound in patients with ST-segment elevation acute myocardial infarction. Am J Cardiol. 2006;98(3):309–13.

    Article  PubMed  Google Scholar 

  58. • Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54(1):49–57. The first and largest prospective study of high-risk plaque features detected by CT for the prediction of future cardiac events.

    Article  PubMed  Google Scholar 

  59. • van Velzen JE, de Graaf FR, de Graaf MA, et al. Comprehensive assessment of spotty calcifications on computed tomography angiography: comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol. 2011;18(5):893–903. A study describing detailed analysis and classification of spotty calcium.

    Article  PubMed  Google Scholar 

  60. • Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging. 2010;3(4):440–4. An ex vivo study that systematically describes the napkin-ring sign and correlated CT findings to histopathology.

    Article  PubMed  Google Scholar 

  61. Donnelly P, Maurovich-Horvat P, Vorpahl M, et al. Multimodality imaging atlas of coronary atherosclerosis. JACC Cardiovasc Imaging. 2010;3(8):876–80.

    Article  PubMed  Google Scholar 

  62. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 2012. (in press)

  63. • Madder RD, Chinnaiyan KM, Marandici AM, Goldstein JA. Features of disrupted plaques by coronary computed tomographic angiography: correlates with invasively proven complex lesions. Circ Cardiovasc Imaging. 2011;4(2):105–13. A study reporting novel high-risk coronary plaque feature - plaque disruption and ulceration.

    Article  PubMed  Google Scholar 

  64. Brosh D, Higano ST, Lennon RJ, Holmes DR, Lerman A. Effect of lesion length on fractional flow reserve in intermediate coronary lesions. Am Heart J. 2005;150(2):338–43.

    Article  PubMed  Google Scholar 

  65. • Kristensen TS, Engstrøm T, Kelbæk H, von der Recke P, Nielsen MB, Kofoed KF. Correlation between coronary computed tomographic angiography and fractional flow reserve. Int J Cardiol. 2010;144(2):200–5. A study correlating the length of stenosis measured by CT to fractional flow reserve assessment of coronary stenosis.

    Article  PubMed  Google Scholar 

  66. Pundziute G, Schuijf JD, Jukema JW, et al. Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2007;49(1):62–70.

    Article  PubMed  Google Scholar 

  67. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50(12):1161–70.

    Article  PubMed  Google Scholar 

  68. Ahmadi N, Nabavi V, Hajsadeghi F, et al. Mortality incidence of patients with non-obstructive coronary artery disease diagnosed by computed tomography angiography. Am J Cardiol. 2011;107(1):10–6.

    Article  PubMed  Google Scholar 

  69. Schlett CL, Banerji D, Siegel E, et al. Prognostic value of CT angiography for major adverse cardiac events in patients with acute chest pain from the emergency department: 2-year outcomes of the ROMICAT trial. JACC Cardiovasc Imaging. 2011;4(5):481–91.

    Article  PubMed  Google Scholar 

  70. • Chow BJW, Small G, Yam Y, et al. Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: COroNary computed tomography angiography evaluation for clinical outcomes: an InteRnational Multicenter registry. Circ Cardiovasc Imaging. 2011;4(5):463–72. The largest study of the value of coronary CTA in prediction of mortality. The study showed that the presence and extent of obstructive CAD as well as the presence of non-obstructive coronary plaque predict overall mortality.

    Article  PubMed  Google Scholar 

  71. Bamberg F, Sommer WH, Hoffmann V, et al. Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coronary computed tomography angiography. J Am Coll Cardiol. 2011;57(24):2426–36.

    Article  PubMed  Google Scholar 

  72. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57(10):1237–47.

    Article  PubMed  Google Scholar 

  73. Papadopoulou S-L, Neefjes LA, Garcia-Garcia HM, et al. Natural history of coronary atherosclerosis by multislice computed tomography. JACC Cardiovasc Imaging. 2012;5(3 Suppl):S28–37.

    Article  PubMed  Google Scholar 

Download references

Disclosure

M. Ferencik: none; H. Seifarth: none; C. L. Schlett: none; P. Maurovich-Horvat: none; B. Wai: none; B. B. Ghoshhajra: Siemens Healthcare USA (honoraria); U. Hoffmann: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maros Ferencik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferencik, M., Seifarth, H., Schlett, C.L. et al. Characteristics of High-Risk Plaques as Identified on Coronary Computed Tomography Angiography. Curr Cardiovasc Imaging Rep 5, 265–273 (2012). https://doi.org/10.1007/s12410-012-9149-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-012-9149-1

Keywords

Navigation