Skip to main content
Log in

Contrast enhanced ultrasound imaging

  • From Bench to Imaging
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968;3:356-66.

    Article  CAS  PubMed  Google Scholar 

  2. Feinstein SB. The powerful microbubble: From bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am J Physiol Heart Circ Physiol 2004;287:H450-7.

    Article  CAS  PubMed  Google Scholar 

  3. Reale A, Pizzuto F, Gioffre PA, et al. Contrast echocardiography: Transmission of echoes to the left heart across the pulmonary vascular bed. Eur Heart J 1980;1:101-6.

    CAS  PubMed  Google Scholar 

  4. Meltzer RS, Tickner EG, Popp RL. Why do the lungs clear ultrasonic contrast? Ultrasound Med Biol 1980;6:263-9.

    Article  CAS  PubMed  Google Scholar 

  5. DeMaria AN, Bommer W, Takeda P, Mason DT, Kwan OL, Rasor J. Value and limitations of contrast echocardiography in cardiac diagnosis. J Cardiogr 1983;13:1-13.

    CAS  PubMed  Google Scholar 

  6. DeMaria AN, Bommer W, Kwan OL, Riggs K, Smith M, Waters J. In vivo correlation of thermodilution cardiac output and videodensitometric indicator-dilution curves obtained from contrast two-dimensional echocardiograms. J Am Coll Cardiol 1984;3:999-1004.

    CAS  PubMed  Google Scholar 

  7. Kremkau FW, Gramiak R, Carstensen EL, Shah PM, Kramer DH. Ultrasonic detection of cavitation at catheter tips. Am J Roentgenol Radium Ther Nucl Med 1970;110:177-83.

    CAS  PubMed  Google Scholar 

  8. Ziskin MC, Bonakdarpour A, Weinstein DP, Lynch PR. Contrast agents for diagnostic ultrasound. Invest Radiol 1972;7:500-5.

    Article  CAS  PubMed  Google Scholar 

  9. Bove AA, Ziskin MC, Mulchin WL. Ultrasonic detection of in vivo cavitation and pressure effects of high-speed injections through catheters. Invest Radiol 1969;4:236-40.

    CAS  PubMed  Google Scholar 

  10. Bommer WJ, Shah PM, Allen H, Meltzer R, Kisslo J. The safety of contrast echocardiography: Report of the Committee on Contrast Echocardiography for the American Society of Echocardiography. J Am Coll Cardiol 1984;3:6-13.

    CAS  PubMed  Google Scholar 

  11. Rubissow GJ, Mackay RS. Ultrasonic imaging of in vivo bubbles in decompression sickness. Ultrasonics 1971;9:225-34.

    Article  CAS  PubMed  Google Scholar 

  12. Kort A, Kronzon I. Microbubble formation: In vitro and in vivo observation. J Clin Ultrasound 1982;10:117-20.

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg BB. Ultrasonic measurement of the aortic arch, right pulmonary artery, and left atrium. Radiology 1971;101:383-90.

    CAS  PubMed  Google Scholar 

  14. Armstrong WF, Mueller TM, Kinney EL, Tickner EG, Dillon JC, Feigenbaum H. Assessment of myocardial perfusion abnormalities with contrast-enhanced two-dimensional echocardiography. Circulation 1982;66:166-73.

    CAS  PubMed  Google Scholar 

  15. Tei C, Sakamaki T, Shah PM, et al. Myocardial contrast echocardiography: A reproducible technique of myocardial opacification for identifying regional perfusion deficits. Circulation 1983;67:585-93.

    CAS  PubMed  Google Scholar 

  16. Feinstein SB, Ten Cate FJ, Zwehl W, et al. Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 1984;3:14-20.

    Article  CAS  PubMed  Google Scholar 

  17. Powsner SM, Keller MW, Saniie J, Feinstein SB. Quantitation of echo-contrast effects. Am J Physiol Imaging 1986;1:124-8.

    CAS  PubMed  Google Scholar 

  18. Kaul S, Pandian NG, Okada RD, Pohost GM, Weyman AE. Contrast echocardiography in acute myocardial ischemia: I. In vivo determination of total left ventricular “area at risk”. J Am Coll Cardiol 1984;4:1272-82.

    Article  CAS  PubMed  Google Scholar 

  19. Porter TR, Pretlow R, D’Sa A, Nixon JV. In vitro study of the effects of volume changes on parameters of the radiofrequency amplitude versus time curve with sonicated albumin. J Am Soc Echocardiogr 1993;6:564-9.

    CAS  PubMed  Google Scholar 

  20. Kemper AJ, O’Boyle JE, Sharma S, et al. Hydrogen peroxide contrast-enhanced two-dimensional echocardiography: Real-time in vivo delineation of regional myocardial perfusion. Circulation 1983;68:603-11.

    CAS  PubMed  Google Scholar 

  21. Zwehl W, Areeda J, Schwartz G, Feinstein S, Ong K, Meerbaum S. Physical factors influencing quantitation of two-dimensional contrast echo amplitudes. J Am Coll Cardiol 1984;4:157-64.

    Article  CAS  PubMed  Google Scholar 

  22. Ong K, Maurer G, Feinstein S, Zwehl W, Meerbaum S, Corday E. Computer methods for myocardial contrast two-dimensional echocardiography. J Am Coll Cardiol 1984;3:1212-8.

    Article  CAS  PubMed  Google Scholar 

  23. Meltzer RS, Tickner EG, Sahines TP, Popp RL. The source of ultrasound contrast effect. J Clin Ultrasound 1980;8:121-7.

    Article  CAS  PubMed  Google Scholar 

  24. Ishihara K. Ultrasonic control of drug releasing. Jpn J Artificial Organs 1984;13:1205-8.

    Google Scholar 

  25. Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T. Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 2001;44:45-54.

    Article  CAS  PubMed  Google Scholar 

  26. Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000;101:2554-6.

    CAS  PubMed  Google Scholar 

  27. Mulvagh SL, DeMaria AN, Feinstein SB, et al. Contrast echocardiography: Current and future applications. J Am Soc Echocardiogr 2000;13:331-42.

    Article  CAS  PubMed  Google Scholar 

  28. Mulvagh SL, Rakowski H, Vannan MA, et al. American Society of Echocardiography Consensus Statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr 2008;21:1179-201, quiz 1281.

    Article  PubMed  Google Scholar 

  29. Senior R, Becher H, Monaghan M, et al. Contrast echocardiography: Evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr 2009;10:194-212.

    Article  PubMed  Google Scholar 

  30. Reilly JP, Tunick PA, Timmermans RJ, Stein B, Rosenzweig BP, Kronzon I. Contrast echocardiography clarifies uninterpretable wall motion in intensive care unit patients. J Am Coll Cardiol 2000;35:485-90.

    Article  CAS  PubMed  Google Scholar 

  31. Yong Y, Wu D, Fernandes V, et al. Diagnostic accuracy and cost-effectiveness of contrast echocardiography on evaluation of cardiac function in technically very difficult patients in the intensive care unit. Am J Cardiol 2002;89:711-8.

    Article  PubMed  Google Scholar 

  32. Daniel C. Echocardiographic imaging of technically difficult patients in the ICU. J Am Soc Echocardiogr 2001;14:917-20.

    Article  CAS  PubMed  Google Scholar 

  33. Anantharam B, Chahal N, Chelliah R, Ramzy I, Gani F, Senior R. Safety of contrast in stress echocardiography in stable patients and in patients with suspected acute coronary syndrome but negative 12-hour troponin. Am J Cardiol 2009;104:14-8.

    Article  CAS  PubMed  Google Scholar 

  34. Kurt M, Shaikh KA, Peterson L, et al. Impact of contrast echocardiography on evaluation of ventricular function and clinical management in a large prospective cohort. J Am Coll Cardiol 2009;53:802-10.

    Article  PubMed  Google Scholar 

  35. Mattrey RF, Kono Y. Contrast-specific imaging and potential vascular applications. Eur Radiol 1999;9:S353-8.

    Article  PubMed  Google Scholar 

  36. Kono Y, Pinnell SP, Sirlin CB, et al. Carotid arteries: Contrast-enhanced US angiography—preliminary clinical experience. Radiology 2004;230:561-8.

    Article  PubMed  Google Scholar 

  37. Feinstein SB. Contrast ultrasound imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. J Am Coll Cardiol 2006;48:236-43.

    Article  PubMed  Google Scholar 

  38. Coli S, Magnoni M, Sangiorgi G, et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: Correlation with histology and plaque echogenicity. J Am Coll Cardiol 2008;52:223-30.

    Article  PubMed  Google Scholar 

  39. Xiong L, Deng YB, Zhu Y, Liu YN, Bi XJ. Correlation of carotid plaque neovascularization detected by using contrast-enhanced US with clinical symptoms. Radiology 2009;251:583-9.

    Article  PubMed  Google Scholar 

  40. Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 1971;285:1182-6.

    Article  CAS  PubMed  Google Scholar 

  41. Chugh A, Patel SN, Rajaram V, Neems R, Feinstein M, Goldin M, Feinstein SB. The clinical use of noninvasive modalities in the assessment of atherosclerosis. In: Davidson M, Toth P, Maki K, editors. Therapeutic lipidology, chap 18. Humana Press; 2007. p. 389-408.

  42. Coli S, Magnoni M, Meslisurgo G, Cianfione D, Feinstein SB. Contrast ultrasound for vasa vasorum imaging: Can we improve plaque risk stratification? In: Sangiorgi G, Homes D Jr, Rosenfield K, Nelson Hopkins L, Spagnoli L, editors. Carotid atherosclerotic disease: Pathologic basis for treatment, chap 15. Informa Healthcare; in press.

  43. Coll B, Feinstein SB. Carotid intima-media thickness measurements: Techniques and clinical relevance. Curr Atheroscler Rep 2008;10:444-50.

    Article  PubMed  Google Scholar 

  44. Granada JF, Feinstein SB. Imaging of the vasa vasorum. Nat Clin Pract Cardiovasc Med 2008;5:S18-25.

    Article  PubMed  Google Scholar 

  45. Macioch JE, Katsamakis CD, Robin J, et al. Effect of contrast enhancement on measurement of carotid artery intimal medial thickness. Vasc Med 2004;9:7-12.

    Article  PubMed  Google Scholar 

  46. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: A direct measurement with ultrasound imaging. Circulation 1986;74:1399-406.

    CAS  PubMed  Google Scholar 

  47. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation 2007;115:459-67.

    Article  PubMed  Google Scholar 

  48. Pignoli P, Longo T. Ultrasound evaluation of atherosclerosis. Methodological problems and technological developments. Eur Surg Res 1986;18:238-53.

    Article  CAS  PubMed  Google Scholar 

  49. van Swijndregt ADM. An in vitro evaluation of the line pattern of the near and far walls of carotid arteries using B-mode ultrasound. Ultrasound Med Biol 1996;22:1007-15.

    Article  Google Scholar 

  50. Swijndregt Mv. An in vivo evaluation of the reproducibility of intima-media thickness: B-mode ultrasound. Ultrasound Med Biol 1999;25:323-30.

    Article  Google Scholar 

  51. Patel SN, Rajaram V, Pandya S, et al. Emerging, noninvasive surrogate markers of atherosclerosis. Curr Atheroscler Rep 2004;6:60-8.

    Article  PubMed  Google Scholar 

  52. Rajaram V, Pandhya S, Patel S, et al. Role of surrogate markers in assessing patients with diabetes mellitus and the metabolic syndrome and in evaluating lipid-lowering therapy. Am J Cardiol 2004;93:32C-48C.

    Article  CAS  PubMed  Google Scholar 

  53. Wong M, Edelstein J, Wollman J, Bond MG. Ultrasonic-pathological comparison of the human arterial wall. Verification of intima-media thickness. Arterioscler Thromb 1993;13:482-6.

    CAS  PubMed  Google Scholar 

  54. Stein JH, Korcarz CE, Hurst RT, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 2008;21:93-111, quiz 189-90.

    Article  PubMed  Google Scholar 

  55. Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ. Hypothesis: Vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984;310:175-7.

    Article  CAS  PubMed  Google Scholar 

  56. Beeuwkes R, Barger C, Silverman K, Lainery LL. Cinemicrographic studies of the vasa vasorum of the human coronary arteries. In: Glagov S, Newman WP, Schaffer S, editors. Pathobiology of the human atherosclerotic plaque. New York, NY: Springer-Verlag; 1990. p. 425.

    Google Scholar 

  57. Clagett GP, Robinowitz M, Youkey JR, et al. Morphogenesis and clinicopathologic characteristics of recurrent carotid disease. J Vasc Surg 1986;3:10-23.

    Article  CAS  PubMed  Google Scholar 

  58. Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NP. Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg 2007;45:155-9.

    Article  PubMed  Google Scholar 

  59. Dvorak HF. Angiogenesis: Update 2005. J Thromb Haemost 2005;3:1835-42.

    Article  CAS  PubMed  Google Scholar 

  60. Fryer JA, Myers PC, Appleberg M. Carotid intraplaque hemorrhage: The significance of neovascularity. J Vasc Surg 1987;6:341-9.

    Article  CAS  PubMed  Google Scholar 

  61. Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human carotid arteries: Its potential contribution to plaque development. Hum Pathol 1999;30:919-25.

    Article  CAS  PubMed  Google Scholar 

  62. Kerwin W, Hooker A, Spilker M, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 2003;107:851-6.

    Article  PubMed  Google Scholar 

  63. Kerwin WS, Oikawa M, Yuan C, Jarvik GP, Hatsukami TS. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 2008;59:507-14.

    Article  CAS  PubMed  Google Scholar 

  64. Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316-25.

    Article  CAS  PubMed  Google Scholar 

  65. Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: Its origin and pathophysiological significance. Hum Pathol 1995;26:450-6.

    Article  CAS  PubMed  Google Scholar 

  66. McCarthy MJ, Loftus IM, Thompson MM, et al. Angiogenesis and the atherosclerotic carotid plaque: An association between symptomatology and plaque morphology. J Vasc Surg 1999;30:261-8.

    Article  CAS  PubMed  Google Scholar 

  67. Mofidi R, Crotty TB, McCarthy P, Sheehan SJ, Mehigan D, Keaveny TV. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg 2001;88:945-50.

    Article  CAS  PubMed  Google Scholar 

  68. Moreno PR, Purushothaman KR, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: Implications for plaque vulnerability. Circulation 2004;110:2032-8.

    Article  PubMed  Google Scholar 

  69. Moulton KS. Plaque angiogenesis and atherosclerosis. Curr Atheroscler Rep 2001;3:225-33.

    Article  CAS  PubMed  Google Scholar 

  70. Vicenzini E, Giannoni MF, Puccinelli F, et al. Detection of carotid adventitial vasa vasorum and plaque vascularization with ultrasound cadence contrast pulse sequencing technique and echo-contrast agent. Stroke 2007;38:2841-3.

    Article  PubMed  Google Scholar 

  71. Yamagishi M, Terashima M, Awano K, et al. Morphology of vulnerable coronary plaque: Insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 2000;35:106-11.

    Article  CAS  PubMed  Google Scholar 

  72. Sluimer JC, Kolodgie FD, Bijnens AP, et al. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 2009;53:1517-27.

    Article  CAS  PubMed  Google Scholar 

  73. Sluimer JC, Gasc JM, van Wanroij JL, et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 2008;51:1258-65.

    Article  CAS  PubMed  Google Scholar 

  74. Sluimer JC, Gasc JM, Hamming I, et al. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol 2008;215:273-9.

    Article  CAS  PubMed  Google Scholar 

  75. Fleiner M, Kummer M, Mirlacher M, et al. Arterial neovascularization and inflammation in vulnerable patients: Early and late signs of symptomatic atherosclerosis. Circulation 2004;110:2843-50.

    Article  PubMed  Google Scholar 

  76. Moreno PR, Fuster V. The year in atherothrombosis. J Am Coll Cardiol 2004;44:2099-110.

    Article  PubMed  Google Scholar 

  77. Mauriello A, Sangiorgi G, Fratoni S, et al. Diffuse and active inflammation occurs in both vulnerable and stable plaques of the entire coronary tree: A histopathologic study of patients dying of acute myocardial infarction. J Am Coll Cardiol 2005;45:1585-93.

    Article  PubMed  Google Scholar 

  78. Williams JK, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol 1998;31:684-91.

    Article  CAS  PubMed  Google Scholar 

  79. Wilson SH, Herrmann J, Lerman LO, et al. Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation 2002;105:415-8.

    Article  CAS  PubMed  Google Scholar 

  80. Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 2003;100:4736-41.

    Article  CAS  PubMed  Google Scholar 

  81. Shah F, Balan P, Weinberg M, et al. Contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization: A new surrogate marker of atherosclerosis? Vasc Med 2007;12:291-7.

    Article  PubMed  Google Scholar 

  82. Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 1995;92:1148-50.

    CAS  PubMed  Google Scholar 

  83. Li T, Tachibana K, Kuroki M, Kuroki M. Gene transfer with echo-enhanced contrast agents: Comparison between Albunex, Optison, and Levovist in mice—initial results. Radiology 2003;229:423-8.

    Article  PubMed  Google Scholar 

  84. Duvshani-Eshet M, Adam D, Machluf M. The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound. J Control Release 2006;112(2):156-66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven B. Feinstein MD, FACC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinstein, S.B., Coll, B., Staub, D. et al. Contrast enhanced ultrasound imaging. J. Nucl. Cardiol. 17, 106–115 (2010). https://doi.org/10.1007/s12350-009-9165-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-009-9165-y

Keywords

Navigation