Skip to main content
Log in

Altered Cerebellar Development in Nuclear Receptor TAK1/TR4 Null Mice Is Associated with Deficits in GLAST+ Glia, Alterations in Social Behavior, Motor Learning, Startle Reactivity, and Microglia

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1−/−) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day   7, TAK1−/− mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1−/− mice. At PND21, Golgi-positive Purkinje cells in TAK1−/− mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1−/− mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1−/− mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BrdU:

Bromodeoxyuridine

CAPS2:

Ca2+-dependent activator protein for secretion 2

DAB:

3,3′-Diaminobenzidine

DNER:

Delta/notch-like epidermal growth factor repeat

EGL:

External granular layer

GLAST:

L-glutamate/L-aspartate transporter

IGL:

Internal granular layer

MZ:

Marginal zone

ML:

Molecular layer

NMDA:

N-methyl-d-aspartic acid

PND:

Postnatal day

References

  1. Chang C, Da Silva SL, Ideta R, Lee Y, Yeh S, Burbach JP (1994) Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc Natl Acad Sci U S A 91:6040–6044

    Article  CAS  PubMed  Google Scholar 

  2. Hirose T, Fujimoto W, Tamaai T, Kim KH, Matsuura H, Jetten AM (1994) TAK1: molecular cloning and characterization of a new member of the nuclear receptor superfamily. Mol Endocrinol 8:1667–1680

    Article  CAS  PubMed  Google Scholar 

  3. Yoshikawa T, DuPont BR, Leach RJ, Detera-Wadleigh SD (1996) New variants of the human and rat nuclear hormone receptor, TR4: expression and chromosomal localization of the human gene. Genomics 35:361–366

    Article  CAS  PubMed  Google Scholar 

  4. Hirose T, O'Brien DA, Jetten AM (1995) Cloning of the gene encoding the murine orphan receptor TAK1 and cell-type-specific expression in testis. Gene 163:239–242

    Article  CAS  PubMed  Google Scholar 

  5. Lee YF, Pan HJ, Burbach JP, Morkin E, Chang C (1997) Identification of direct repeat 4 as a positive regulatory element for the human TR4 orphan receptor. A modulator for the thyroid hormone target genes. J Biol Chem 272:12215–12220

    Article  CAS  PubMed  Google Scholar 

  6. Yan ZH, Karam WG, Staudinger JL, Medvedev A, Ghanayem BI, Jetten AM (1998) Regulation of peroxisome proliferator-activated receptor alpha-induced transactivation by the nuclear orphan receptor TAK1/TR4. J Biol Chem 273:10948–10957

    Article  CAS  PubMed  Google Scholar 

  7. Hirose T, Apfel R, Pfahl M, Jetten AM (1995) The orphan receptor TAK1 acts as a repressor of RAR-, RXR- and T3R-mediated signaling pathways. Biochem Biophys Res Commun 211:83–91

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Wang X, Dong T, Kim E, Lin WJ, Chang C (2003) Identification of a novel testicular orphan receptor-4 (TR4)-associated protein as repressor for the selective suppression of TR4-mediated transactivation. J Biol Chem 278:7709–7717

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima T, Fujino S, Nakanishi G, Kim YS, Jetten AM (2004) TIP27: a novel repressor of the nuclear orphan receptor TAK1/TR4. Nucleic Acids Res 32:4194–4204

    Article  CAS  PubMed  Google Scholar 

  10. van Schaick HS, Rosmalen JG, Lopes da Silva S, Chang C, Burbach JP (2000) Expression of the orphan receptor TR4 during brain development of the rat. Brain Res Mol Brain Res 77:104–110

    Article  PubMed  Google Scholar 

  11. Chen YT, Collins LL, Chang SS, Chang C (2008) The roles of testicular orphan nuclear receptor 4 (TR4) in cerebellar development. Cerebellum 7:9–17

    Article  CAS  PubMed  Google Scholar 

  12. Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663

    Article  CAS  PubMed  Google Scholar 

  13. Rakic P, Sidman RL (1973) Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A 70:240–244

    Article  CAS  PubMed  Google Scholar 

  14. Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci 17:9212–9219

    CAS  PubMed  Google Scholar 

  15. Goldowitz D (1989) The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: evidence from homozygous weaver chimeras. Neuron 2:1565–1575

    Article  CAS  PubMed  Google Scholar 

  16. Hamre KM, Goldowitz D (1997) Meander tail acts intrinsic to granule cell precursors to disrupt cerebellar development: analysis of meander tail chimeric mice. Development 124:4201–4212

    CAS  PubMed  Google Scholar 

  17. Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N (1990) Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci U S A 87:4189–4192

    Article  CAS  PubMed  Google Scholar 

  18. Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M (2000) Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 418:106–120

    Article  CAS  PubMed  Google Scholar 

  19. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  20. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270:393–410

    Article  CAS  PubMed  Google Scholar 

  21. Aruga J, Inoue T, Hoshino J, Mikoshiba K (2002) Zic2 controls cerebellar development in cooperation with Zic1. J Neurosci 22:218–225

    CAS  PubMed  Google Scholar 

  22. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 8:873–880

    CAS  PubMed  Google Scholar 

  23. Tohgo A, Eiraku M, Miyazaki T, Miura E, Kawaguchi SY, Nishi M, Watanabe M, Hirano T, Kengaku M, Takeshima H (2006) Impaired cerebellar functions in mutant mice lacking DNER. Mol Cell Neurosci 31:326–333

    Article  CAS  PubMed  Google Scholar 

  24. Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, Okamoto T, Nakashima H, Kimura K, Tanaka M, Sekine Y, Itohara S, Yuzaki M, Nagao S, Furuichi T (2007) Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci 27:2472–2482

    Article  CAS  PubMed  Google Scholar 

  25. Collins LL, Lee YF, Heinlein CA, Liu NC, Chen YT, Shyr CR, Meshul CK, Uno H, Platt KA, Chang C (2004) Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc Natl Acad Sci U S A 101:15058–15063

    Article  CAS  PubMed  Google Scholar 

  26. Harry GJ, Funk JA, Lefebvre d'Hellencourt C, McPherson CA, Aoyama M (2008) The type 1 interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation. Brain Res 1194:8–20

    Article  CAS  PubMed  Google Scholar 

  27. Harry GJ, Kraft AD (2008) Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 4:1265–1277

    Article  CAS  PubMed  Google Scholar 

  28. Fox MW (1965) Environmental factors influencing stereotyped and allelomimetic behavior in animals. Lab Anim Care 15:363–370

    CAS  PubMed  Google Scholar 

  29. Fox WM (1965) Reflex-ontogeny and behavioural development of the mouse. Anim Behav 13:234–241

    Article  CAS  PubMed  Google Scholar 

  30. Harry GJ, Tilson HA (1981) The effects of postpartum exposure to triethyl tin on the neurobehavioral functioning of rats. Neurotoxicology 2:283–296

    CAS  PubMed  Google Scholar 

  31. Dulawa SC, Geyer MA (2000) Effects of strain and serotonergic agents on prepulse inhibition and habituation in mice. Neuropharmacology 39:2170–2179

    Article  CAS  PubMed  Google Scholar 

  32. Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053

    Article  CAS  PubMed  Google Scholar 

  33. Moy SS, Nadler JJ, Magnuson TR, Crawley JN (2006) Mouse models of autism spectrum disorders: the challenge for behavioral genetics. Am J Med Genet C Semin Med Genet 142C:40–51

    Article  CAS  PubMed  Google Scholar 

  34. Marler MR, Gehrman P, Martin JL, Ancoli-Israel S (2006) The sigmoidally transformed cosine curve: a mathematical model for circadian rhythms with symmetric non-sinusoidal shapes. Stat Med 25:3893–3904

    Article  PubMed  Google Scholar 

  35. Chen YT, Collins LL, Uno H, Chou SM, Meshul CK, Chang SS, Chang C (2007) Abnormal cerebellar cytoarchitecture and impaired inhibitory signaling in adult mice lacking TR4 orphan nuclear receptor. Brain Res 1168:72–82

    Article  CAS  PubMed  Google Scholar 

  36. Alcantara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73

    CAS  Google Scholar 

  37. Iacopino AM, Rhoten WB, Christakos S (1990) Calcium binding protein (calbindin-D28k) gene expression in the developing and aging mouse cerebellum. Brain Res Mol Brain Res 8:283–290

    Article  CAS  PubMed  Google Scholar 

  38. Chen YT, Collins LL, Uno H, Chang C (2005) Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol Cell Biol 25:2722–2732

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Chen YT, Xie S, Wang L, Lee YF, Chang SS, Chang C (2007) Loss of testicular orphan receptor 4 impairs normal myelination in mouse forebrain. Mol Endocrinol 21:908–920

    Article  CAS  PubMed  Google Scholar 

  40. Willuhn I, Steiner H (2006) Motor-skill learning-associated gene regulation in the striatum: effects of cocaine. Neuropsychopharmacology 31:2669–2682

    Article  CAS  PubMed  Google Scholar 

  41. Cook EH Jr, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ, Lincoln A, Nix K, Haas R, Leventhal BL, Courchesne E (1998) Linkage-disequilibrium mapping of autistic disorder, with 15q11–13 markers. Am J Hum Genet 62:1077–1083

    Article  CAS  PubMed  Google Scholar 

  42. Perry W, Minassian A, Lopez B, Maron L, Lincoln A (2007) Sensorimotor gating deficits in adults with autism. Biol Psychiatry 61:482–486

    Article  PubMed  Google Scholar 

  43. McAlonan GM, Daly E, Kumari V, Critchley HD, van Amelsvoort T, Suckling J, Simmons A, Sigmundsson T, Greenwood K, Russell A, Schmitz N, Happe F, Howlin P, Murphy DG (2002) Brain anatomy and sensorimotor gating in Asperger's syndrome. Brain 125:1594–1606

    Article  PubMed  Google Scholar 

  44. Dawson G, Webb S, Schellenberg GD, Dager S, Friedman S, Aylward E, Richards T (2002) Defining the broader phenotype of autism: genetic, brain, and behavioral perspectives. Dev Psychopathol 14:581–611

    Article  PubMed  Google Scholar 

  45. Moy SS, Nadler JJ (2008) Advances in behavioral genetics: mouse models of autism. Mol Psychiatry 13:4–26

    Article  CAS  PubMed  Google Scholar 

  46. Swerdlow NR, Shoemaker JM, Stephany N, Wasserman L, Ro HJ, Geyer MA (2002) Prestimulus effects on startle magnitude: sensory or motor? Behav Neurosci 116:672–681

    Article  PubMed  Google Scholar 

  47. Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 132:169–180

    Article  CAS  Google Scholar 

  48. Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609

    Article  CAS  PubMed  Google Scholar 

  49. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  CAS  PubMed  Google Scholar 

  50. Rio C, Rieff HI, Qi P, Khurana TS, Corfas G (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19:39–50

    Article  CAS  PubMed  Google Scholar 

  51. Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272:417–419

    Article  CAS  PubMed  Google Scholar 

  52. Adams NC, Tomoda T, Cooper M, Dietz G, Hatten ME (2002) Mice that lack astrotactin have slowed neuronal migration. Development 129:965–972

    CAS  PubMed  Google Scholar 

  53. Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468

    Article  PubMed  Google Scholar 

  54. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  CAS  PubMed  Google Scholar 

  55. De Schutter E, Vos B, Maex R (2000) The function of cerebellar Golgi cells revisited. Prog Brain Res 124:81–93

    Article  PubMed  Google Scholar 

  56. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-d-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    Article  CAS  PubMed  Google Scholar 

  57. Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382

    Article  CAS  PubMed  Google Scholar 

  58. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    CAS  PubMed  Google Scholar 

  59. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  PubMed  Google Scholar 

  60. Dirks A, Groenink L, Schipholt MI, van der Gugten J, Hijzen TH, Geyer MA, Olivier B (2002) Reduced startle reactivity and plasticity in transgenic mice overexpressing corticotropin-releasing hormone. Biol Psychiatry 51:583–590

    Article  CAS  PubMed  Google Scholar 

  61. Fiez JA (1996) Cerebellar contributions to cognition. Neuron 16:13–15

    Article  CAS  PubMed  Google Scholar 

  62. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Randy Thresher, UNC/Chapel Hill, NC for generating TAK1−/− mice; Ms. Laura M. Degraff for technical assistance; Dr. Fu Du for the Golgi staining, and Drs. Gordon Flake (NIEHS) and Robert Berman (University of California/Davis) for comments. This research was supported by the Division of Intramural Research at the National Institute of Environmental Health Sciences, NIH (Z01-ES-101586; Z01-ES-021164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Jean Harry or Anton M. Jetten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YS., Harry, G.J., Kang, H.S. et al. Altered Cerebellar Development in Nuclear Receptor TAK1/TR4 Null Mice Is Associated with Deficits in GLAST+ Glia, Alterations in Social Behavior, Motor Learning, Startle Reactivity, and Microglia. Cerebellum 9, 310–323 (2010). https://doi.org/10.1007/s12311-010-0163-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0163-z

Keywords

Navigation