Skip to main content
Log in

Chemoprotective Role of Triphala Against 1,2-Dimethylhydrazine Dihydrochloride Induced Carcinogenic Damage to Mouse Liver

  • Original Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The present study was carried out to investigate the protective role of Triphala (a combination in equal proportions by weight of fruit powder of Terminalia belerica, Terminalia chebula and Emblica officinalis) against 1,2-dimethylhydrazinedihydrochloride (DMH) induced Endoplasmic reticulum stress (ER stress) in mouse liver. An oral dose of 3 mg/kg body wt in drinking water for 5 weeks significantly (P < 0.001) increased the levels of serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), serum Alkaline phosphatase (ALP) and total bilirubin thus suggesting damage to mouse liver and biliary dysfunction. The DMH administration invariably led to increase in the liver microsomal proteins of molecular weight of about 29 (ERp29) and 53 kDa (ERp53) and decrease in the protein of molecular weight of 36 kDa (ERp36) thereby suggesting the interference of DMH and its metabolites with normal protein biosynthesis and folding, in the reticular membranes of the liver cells thus developing ER stress. Histological studies show necrosis, large sized hepatocytes with increased N:C ratio, aberrant mitotic figures and prominent nucleoli in the liver of DMH treated mice. In animals fed 5% Triphala in diet (w/w) during DMH administration, there was significant decrease in the above changes in the liver suggesting the suppression of DMH induced ER stress in liver. Triphala significantly (P < 0.05) decreased lipid peroxidation and also the activity of lactate dehydrogenase (LDH) in mouse liver. It simultaneously increased the level of reduced glutathione (GSH) and the activity of glutathione-S-transferase (GST) thereby suggesting that it prevents peroxidative damage and also diverts the active metabolites (electrophiles) of DMH from their interactions with critical cellular bio-molecules which could be responsible for its protective action against DMH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Toth B. Morphological studies of angiosarcinomas induced by 1,2-dimethylhydrazine in syrian golden hamsters. Cancer Res. 1972;32(12):2818–27.

    PubMed  CAS  Google Scholar 

  2. Nomura K, Schlake W, Grundman E. New aspects of intestinal carcinogenesis by DMH and the influence of antilymphocyte globulin on it’s progress. Cancer Res. 1978;92(1):17–73.

    CAS  Google Scholar 

  3. Druckery H, Preusmann R, Schmahl D, Blum G. Topics in chemical carcinogenesis. In: Nakahara M, editor, Tokyo: University of Tokyo Press; 1972. p. 73–103.

  4. Nagasawa HT, Shirota FN, Matsumoto H. Decomposition of methylazoxy methanol, the aglycone of cycansin in D2O. Nature. 1972;236:234–5.

    Article  PubMed  CAS  Google Scholar 

  5. Comstok CC, Lawson LH, Greene EA, Oberst FW. AMA Arch Ind Health. 1954;10:476–9.

    Google Scholar 

  6. Hawks A, Magee PN. The alkylation of nucleic acids of rat and mouse in vivo by the carcinogen 1,2-dimethylhydrazine. Br J Cancer. 1974;30:440–7.

    Article  PubMed  CAS  Google Scholar 

  7. Swenberg JA, Cooper HLN, Bucheler J, Kleihues P. 1,2-Dimethylhydrazine induced methylation of DNA bases in various rat organs and the effect of pre treatment with disulfiram. Cancer Res. 1979;32:146–52.

    Google Scholar 

  8. Sharma KK, Pathak RM, ShramaV, Dani HM. Effects of orally administered 1,2-dimethylhydrazine on lipid and protein composition of mouse small intestinal brush border membranes. Res Bull PU Chandigarh, India 1995;45(1–4): 1–9

  9. Sharma KK, Sharma V, Dani HM. Effects of orally administered 1,2-Dimethylhydrazine on the absorptive activities of small intestine of mouse. Res Bull PU, Chandigarh, India 1995;45(I–IV): 11–17

    Google Scholar 

  10. Toth B. Synthetic and naturally occurring hydrazines as possible cancer causative agents. Cancer Res. 1975;35(12):3693–7.

    PubMed  CAS  Google Scholar 

  11. Sharma KK. Biochemical studies on the structural and functional aspects of cell membranes during chemical carcinogenesis PhD thesis. Chandigarh: Panjab University; 1991. p. 5–7.

  12. Liu YY. Chemical studies on tobacco smoke. quantitative analysis of hydrazine in tobacco and cigarette smoke. Anal Chem. 1974;46:885–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kostela JG, Lawrence BH. Hydrocarbon constituents from white strains of the mushroom Agaricus bisporus. J Agr Food Chem. 1981;20(1):185–6.

    Article  Google Scholar 

  14. Wilbert S, Steinbrecher K, Gunderson E. Prevalence of hydrazine derivatives in food and food products. J Agr Food Chem. 1990;52:214.

    Google Scholar 

  15. Parthasarthy R, Raghupati Sarma G, Janardhanam B, Ramachandran P, Santha T, Sibasubramaniam S. Hepatic toxicity in South Indian patients during treatment of tuberculosis with short-course regimens containing isoniazide, aflatoxin and pyrazinamide. Tubercle. 1986;67:99–106.

    Article  Google Scholar 

  16. Shakun NP, Tabachuk OP. The comparative action of isoniazide, aflatoxin and ethambutol on liver function. Eksp Klin Farmakol. 1992;55:45.

    CAS  Google Scholar 

  17. Suvarajan VV. Ayurvedic drugs and their plant sources. Lebanon, NH: International Science Publisher; 1994.

  18. Suresh K, Vasudevan DM. Augmentation of murine natural killer cell and antibody dependent cellular cytotoxicity activities by Phyllanthus emblica, a new immuno modulator. J Ethnopharmacol. 1994;44:55–60.

    Article  PubMed  CAS  Google Scholar 

  19. Sabu MC, Kuttan R. Anti-diabetic activity of medicinal plants and it’s relationship with their antioxidant property. J Ethno pharmacol. 2002;81(2):155–62.

    CAS  Google Scholar 

  20. Tokura K, Kagawa S. Anti cancer agents containing chebulanin from Terminalia chebula. Jpn Kokai Tokyo Koho JP. 1995;7:138–65.

    Google Scholar 

  21. Kaur S, Arora S, Kaur K, Kumar S. The in vitro antimutagenic activity of Triphala—an Indian herbal drug. Food Chem Toxicol. 2002;40(4):527–34.

    Article  PubMed  CAS  Google Scholar 

  22. Jagetia GC, Baliga MS, Malagi KJ, Kamath MS. The evaluation of the protective effect of Triphala (an ayurvedic rejuvenating drug) in mice exposed to y radiation. Phytomedicine. 2002;9:99–108.

    Article  PubMed  CAS  Google Scholar 

  23. Reddy VRC. Cardiotonic activity of the fruits of Terminalia chebula. Fitoterapia. 1990;61:517–25.

    Google Scholar 

  24. Ghosal S, Tripathi VK, Chauhan S. Active constituents of Emblica officinalis, Part I. The chemistry and antioxidative effects of two new hydrolysable tannins, emblicanin a and b. Ind J Chem Section B-Organic Chemistry including Medicinal Chemistry. 1996;35:941–8.

    Google Scholar 

  25. Bhattacharya A. Antioxidant activity of active tannoid principles of Emblica officinalis (amla). Ind J Expt Biol. 1999;37:676–80.

    CAS  Google Scholar 

  26. Deep G, Dhiman M, Rao AR, Kale RK. Chemopreventive potential of Triphala (s composite Indian drug) on Benzo (a) Pyrene induced Forestomach Tumorigenesis in murine tumor model. J Exp Clin Cancer Res. 2005;24(4):555–63.

    PubMed  CAS  Google Scholar 

  27. Bedell MA, Lewis JG, Billing KC, Swenberg JA. Cell specificity in hepatocarcinogenesis: preferential accumulation of O6 methylguanine in target cell DNA during continuous exposure to rats to 1,2-dimethylhydrazine. Cancer Res. 1982;42(8):3079–83.

    PubMed  CAS  Google Scholar 

  28. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28:53–6.

    Google Scholar 

  29. Kind PRN, King EJJ. Estimation of plasma phosphatase by determination of hydrolyzed phenol with anti-pyrine. J Clin Pathol. 1957;7:322–30.

    Article  Google Scholar 

  30. Malloy HT, Evelyn KA. The determination of bilirubin with the photometric colorimeter. J Biol Chem. 1937;119:481–90.

    CAS  Google Scholar 

  31. Moron MA, Depierre JW, Mannervick B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582:67–78.

    PubMed  CAS  Google Scholar 

  32. Mihira M, Uchiyama M. Determination of malonaldehyde precursors in tissues by thiobarbituric acid test. Anal Biochem. 1978;86:271–8.

    Article  Google Scholar 

  33. Habig WH, Pabst MJ, Jokoby WB. The first step in mercapturic acid formation. J Biol Chem. 1994;249:7130–9.

    Google Scholar 

  34. Bergmeyer HU, Bernt E. Methods in enzymatic analysis, vol. II. New York and London: Verlag Academic Pres; 1974. p. 5574–9.

    Google Scholar 

  35. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  36. Lowry OH, Rosenbrough NJ, Farr A, Randalll RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.

    PubMed  CAS  Google Scholar 

  37. Harper HA. The functions and tests of liver, In: Review of physiological chemistry. Los Altos, California: Lange Medical Publishers; 1961. p. 271–283.

  38. Sathiyanaryanan L, Arulmozhi S, Chdiambarnathan N. Anticholesterlemic, hepatoprotective and antioxidant activity of Gilnus lotoides Linn. against ethanol induced liver damage in rats. Phcog Mag. 2006;2:160–2.

    Google Scholar 

  39. Dortman RB, Lawhorn GT. Serum enzymes as indicators of chemical induced liver damage. Drug Chem Toxicol. 1978;1:163–71.

    Article  Google Scholar 

  40. Abul K, Najmi KK, Pillai SN, Aqil PM. Free radical scavenging and hepatoprotective activity of jigrine against galactosamine induced liver damage. Drug Chem Toxicol. 1978;1:163–71.

    Article  Google Scholar 

  41. Roa RR. Mechanism of drug induced hepatotoxicity. Ind J Pharamcol. 1973;5:313–8.

    Google Scholar 

  42. Kim MK, Hyun SH, Choung SY. Effect of herbal extract mixtures on serum and liver lipid metabolism in chronic ethanol administered rats. J Health Sci. 2006;52:344–51.

    Article  CAS  Google Scholar 

  43. Suresh Kumar SV, Sujatha C, Syamala J, Nagasudha B, Mishra SH. Protective effect of root extract of operculina terpethum Linn. Against paracetamol induced hepatotoxicity in rats. Ind J Pharma Sci. 2006;68:32–5.

    Article  Google Scholar 

  44. Singh B, Saxena AK, Chandan BK, Anand KK, Suri OP, Suri KA, Satti NK. Hepatoprotective activity of verbenalin on experimental liver damage in rodents. Fitoterapia. 1989;69:135–40.

    Google Scholar 

  45. Meshkibaf MH, Ebeahimi A, Ghodsi R, Ahmadi A. Chronic effects of lamotrigine on liver function in adult male rats. Ind J Clin Biochem. 2006;21:161–264.

    Article  CAS  Google Scholar 

  46. Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang D, Richardson DR. Endoplasmic reticulum protein29 (ERp29): an emerging role in cancer. Int J Biochem Cell Biol. 2011;43(1):33–6.

    Article  PubMed  CAS  Google Scholar 

  48. Ames BN, Shigenoga MK, Hagen TM. Oxidants, antioxidants and degenerative diseases of ageing. Proc Nat Acad Sci USA. 1993;90:7915–22.

    Article  PubMed  CAS  Google Scholar 

  49. Ketterer B. Protective role of glutathione and glutathione-S-transferases in mutagenesis and carcinogenesis. Mutat Res. 1988;202:343.

    PubMed  CAS  Google Scholar 

  50. Aggarwal A, Choudhary D, Uperti M. Rath:II studies in liver as a distant organ of tumour bearing mice. Mol Cell Biochem. 2001;224:9–17.

    Article  Google Scholar 

  51. Dixon DP, Cummins I, Cle DJ, Edwards R. Glutathione mediated detoxification system in plants. Curr Opin Plant Biol. 1998;1:256.

    Google Scholar 

  52. Talalay P, Delong MJ, Prochaska HJ. Molecular mechanism in protection against carcinogensis. In: Cory JG, Szentivani Plenum A, editors. Cancer biology and therapeutics. New York: Plenum Press; 1987. p. 187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Sharma, K.K. Chemoprotective Role of Triphala Against 1,2-Dimethylhydrazine Dihydrochloride Induced Carcinogenic Damage to Mouse Liver. Ind J Clin Biochem 26, 290–295 (2011). https://doi.org/10.1007/s12291-011-0138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-011-0138-y

Keywords

Navigation