Skip to main content
Log in

Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with γ-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo, W.L., J. Marcon, W. Maccheroni, J.D. van Elsas, Jr., J.W.L. van Vuurde, and J.L. Azevedo. 2002. Diversità of endophytic bacterial populations and their interaction with Xylella fastidiosa citrus plants. Appl. Environ. Microbiol. 68, 4906–4914.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C.R., G.A. Dickie, W.L.G. Harvey, and J.W.Y.F. Chan. 1994. Endophytic bacteria in grapevine. Can. J. Microbiol. 41, 46–53.

    Google Scholar 

  • Ben-Dov, E., O.H. Shapiro, N. Siboni, and A. Kushmaro. 2006. Advantage of using inosine at the 3′ terminal of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72, 6902–6909.

    Article  PubMed  CAS  Google Scholar 

  • Berg, G., A. Krechel, M. Ditz, R. Sikora, A. Ulrich, and J. Hallman. 2005. Endophytic and ectophytic potato-associted bacterial commmunities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51, 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Bonaterra, A., M. Mari, L. Casalini, and E. Montesinos. 2003. Biological control of Monilinia laxa and Rizophus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. Int. J. Food Microbiol. 84, 93–104.

    PubMed  Google Scholar 

  • Brooks, D.S., C.F. Gonzalez, D.N. Appel, and T.H. Filer. 1994. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control. 4, 373–381.

    Article  Google Scholar 

  • Brusetti, L., S. Borin, D. Mora, A. Rizzi, N. Raddadi, C. Sorlini, and D. Daffonchio. 2006. Usefulness of length heterogeneity-PCR for monitoring lactic acid bacteria succession during maize ensiling. FEMS Microbiol. Ecol. 56, 154–164.

    Article  PubMed  CAS  Google Scholar 

  • Cankar, K., H. Kraigher, M. Ravinkar, and K.M. Rupnik. 2005. Bacterial endophytes from seeds of Norway spruce (Picea albis L. Karst). FEMS Microbiol. Lett. 244, 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Chelius, M.K. and E.W. Triplett. 2001. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263.

    PubMed  CAS  Google Scholar 

  • Conn, V. and C.M.M. Franco. 2004. Analysis of the endophytic actinobacterial population in roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol. 70, 1787–1794.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, T.P., W.T. Sloan, and J.W. Scannel. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99, 10494–10499.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R.E. and E.L. Dally. 2001. Revised subgroup classification of group 16SrV phytoplasmas and placement of Flavescence dorèe-associated phytoplasmas in two distinct subgroups. Plant Dis. 85, 790–797.

    Article  CAS  Google Scholar 

  • Deng, S. and C. Hiruki. 1991. Genetic relatedness between two non-culturable myciplasmalike organisms revealed by nucleic acid hybridyzation and polymerase chain reaction. Phytopathology 81, 1475–1479.

    Article  Google Scholar 

  • Dent, K.C., J.R. Stephen, and W.E. Finch-Savage. 2004. Molecular profiling of microbial community associated with seeds of Beta vulgaris subsp. vulgaris (Sugar beet). J. Microbiol. Methods 56, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Dunbar, J., S. Takala, S.M. Barns, A.J. Davis, and C.R. Kuske. 1999. Levels of bacterial community diversity in four arid soil compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65, 1662–1669.

    PubMed  CAS  Google Scholar 

  • Faoro, F. 2005. Why do grapevine phytoplasmas escape electron microscopists? Petria 15(1/2), 99–101.

    Google Scholar 

  • Ferreira, A., M.C. Quecine, P.T. Lacava, S. Oda, J.L. Azevedo, and W.L. Araujo. 2008. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol. Lett. 287, 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J.A., C.I. Reich, S. Sharma, J.S. Weisbaum, B.A. Wilson, and G.J. Olsen. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461–2470.

    Article  PubMed  CAS  Google Scholar 

  • Gray, E.J. and D.L. Smith. 2005. Intracellular and extracellular PGPR: commonalities and distinction in the plant bacterium signalling processes. Soil Biol. Biochem. 37, 395–412.

    Article  CAS  Google Scholar 

  • Gutierrez-Zamora, M.L. and E. Martínez-Romero. 2001. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Haiwen, L., J. Luo, J.K. Hemphill, J.T. Wang, and J.H. Gould. 2001. A rapid and high yielding DNA Miniprep for cotton (Gossypium spp.). Plant Mol. Biol. Rep. 19, 183a–183e.

    Article  Google Scholar 

  • Hallmann, J., A. Quadt-Hallmann, W.F. Mahaffee, and J.W. Kloepper. 1997. Bacterial endophytes in agicolture crops. Can. J. Microbiol. 43, 895–914.

    CAS  Google Scholar 

  • Hengstmann, U., K.J. Chin, P.H. Janssen, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numericcaly abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65, 5050–5058.

    PubMed  CAS  Google Scholar 

  • Hurek, T., B. Reinhold-Hurek, M. Van Montagu, and E. Kellemberg. 1994. Root colonization and systemic spreeding of Azoarcus sp. strain BH72 in grasses. J. Bacteriol. 176, 1913–1923.

    PubMed  CAS  Google Scholar 

  • Huws, S.A., J.E. Edwards, E.J. Kim, and N.D. Scollan. 2007. Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems, J. Microbiol. Methods 3, 565–569.

    Article  CAS  Google Scholar 

  • Idris, R., R. Trifonova, M. Puschenreitr, W.W. Wenzel, and A. Sessitch. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677.

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru, C.A.E., E. Klobs, and R.R. Brubaker. 1988. Multiple antibiotic production by Erwinia herbicola. Phytopatology 78, 746–750.

    Article  CAS  Google Scholar 

  • Jacobs, M.J., W.M. Bugbee, and D.A. Gabrielson. 1985. Enumeration, location and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63, 1262–1265.

    Google Scholar 

  • Jensen, M.A., J.A. Webster, and N. Straus. 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59, 945–952.

    PubMed  CAS  Google Scholar 

  • Jiao, J.Y., H.X. Wang, Y. Zeng, and Y.M. Shen. 2006. Enrichment for microbes living in association with plant tissues. J. Appl. Microbiol. 100, 830–837.

    Article  PubMed  Google Scholar 

  • Kado, C.I. 1992. Plant pathogenic bacteria, p. 660–662. In A. Ballows, G.G. Truper, M. Dworkin, W. Harden, and K.H. Schleifer (eds.), The prokaryotes, Springerverlang, New York, N.Y., USA.

    Google Scholar 

  • Kaiser, O., A. Pühler, and W. Selbitschka. 2001. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microb. Ecol. 42, 136–149.

    PubMed  CAS  Google Scholar 

  • Kaul, S., M. Wani, K.L. Dhar, and M.K. Dhar. 2008. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann. Microbiol. 58, 443–446.

    CAS  Google Scholar 

  • Kumar S., J. Dudley, M. Nei, and K. Tamura. 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 9, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, p. 133. Modern microbiological methods. In E. Stackebrandt and M. Goodfellow (eds.), J. Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Lee, I.-M., D.E. Gundersen-Rindal, R. Davis, and I.M. Bartoszyk. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48, 1153–1169.

    Article  CAS  Google Scholar 

  • Marzorati, M., A. Alma, L. Sacchi, M. Pajoro, S. Palermo, L. Brusetti, N. Raddadi, A. Balloi, R. Tedeschi, E. Clementi, S. Corona, F. Quaglino, P.A. Bianco, T. Beninati, C. Bandi, and D. Daffonchio. 2006. A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence Dorée in Vitis vinifera. Appl. Environ. Microbiol. 72, 1467–1475.

    Article  PubMed  CAS  Google Scholar 

  • Mills, D.K., J.A. Entry, P.M. Gillevet, and K. Mathee. 2007. Assessing microbial community diversity using amplicon length heterogeneity polymerase chain reaction. Soil Sci. Soc. Am. J. 71, 572–578.

    Article  CAS  Google Scholar 

  • Muyzer, G., S. Hottentrager, A. Teske, and C. Wawer. 1996. Denaturing gradient gel eletrophoresisfor PCR amplified 16s rRNA gene a new molecular approach to analyze the genetic diversity of mixed mcrobial communities, p. 1–23. In A.D.L. Akkermans, D.J. van Elsas, and F.J. Bruijin (eds.), Molecular Microbial Ecology Manual 3.4.4. Kluwer academic publisher, Dordrecht, The Netherlands.

    Google Scholar 

  • Ortmann, I., U. Conrath, and B.M. Moerschbacher. 2006. Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEMS Lett. 580, 4491–4494.

    CAS  Google Scholar 

  • Prince, J.P., R.E. Davis, T.K. Wolf, I.M Lee, B.D. Mogen, E.L. Dally, A. Bartaccini, R. Credi, and M. Barba. 1993. Molecular detection of diverse mycoplasma like organisms (MLOs) associated with grapevine yellows and their classification with aster yellows MLOs. Phytopathology 83, 1130–1137.

    Article  CAS  Google Scholar 

  • Pusey, P.L., V.O. Stockwell, and D.R. Rudell. 2008. Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology 98, 1136–1143.

    Article  PubMed  CAS  Google Scholar 

  • Raupach, G.S. and J.W. Kloepper. 1998. Mixtures of plant-growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88, 1158–1164.

    Article  PubMed  CAS  Google Scholar 

  • Raupach, G.S. and J.W. Kloepper. 2000. Biocontrol of cucumber diseases in the field by plant-growth promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis. 84, 1073–1075.

    Article  CAS  Google Scholar 

  • Ritchie, N.J., M.E. Schutter, R.P. Dick, and D.D. Myrold. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66, 1668–1675.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, B., E. Seemuller, C.D. Smart, and B.C. Kirkpatrick. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas, p. 369–380. In S. Razin and J.G. Tully (eds.), Molecular microbial and diagnostic procedures in mycoplasmology. Academic press, San Diego, USA.

    Chapter  Google Scholar 

  • Sessitsch, A., B. Reiter, U. Pfeifer, and E. Wilhelm. 2001. Analysis of endophytic bacteria in three potato cultivars. Abstr. 9th Meet. Int. Soc. Mol. Ecol., Abstr TU.052.

  • Sessitsch, A., B. Reiter, U. Pfeifer, and E. Wilhelm. 2002. Cultivation-independent population of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol. Ecol. 39, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Shuman, S. 1994. Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. J. Biol. Chem. 269, 32678–32684.

    PubMed  CAS  Google Scholar 

  • Sun, L., F. Qiu, X. Zhang, X. Dai, X. Dong, and W. Song. 2008. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequences analysis. Microb. Ecol. 55, 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105–1109.

    Article  PubMed  CAS  Google Scholar 

  • Taechowisan, T. and S. Lumyong. 2003. Activity of endophytic actimomycetes from roots of Zingiber officinale and Alpinia galanga against phytopathogenic fungi. Ann. Microbiol. 53, 291–298.

    Google Scholar 

  • Ulrich, K., A. Ulrich, and D. Ewald. 2008. Diversity of endophytic bacterial communities in poplar grown under field condition. FEMS Microbiol. Ecol. 63, 169–180.

    Article  PubMed  CAS  Google Scholar 

  • Vega, F.E., M. Pava-Ripoll, F. Posada, and Y.S. Buyer. 2005. Endophytic bacteria in Coffea arabica L. J. Basic Microbiol. 45, 371–380.

    Article  PubMed  Google Scholar 

  • Vidaver, A.K. 1982. The plant pathogenic corynebacteria. Annu. Rev. Microbiol. 36, 495–517.

    Article  PubMed  CAS  Google Scholar 

  • Vorwerk, S., D. Martinez-Torres, and A. Forneck. 2007. Pantoea agglomerans-associated bacteria in grape phylloxera (Daktulosphaira vitifoliae, Fitch). Agr. Forest. Entomol. 9, 57–64.

    Article  Google Scholar 

  • Whitesides, S.K. and R.A. Spotts. 1991. Frequency, distribution, and characteristics of endophytic Pseudomonas syringe in pear trees. Phytopathology 81, 453–457.

    Article  Google Scholar 

  • Wilson, D. 1995. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73, 274–276.

    Article  Google Scholar 

  • Wright, S.A.I., C.H. Zumoff, L. Schneider, and S.V. Beer. 2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol. 67, 284–292.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Attilio Bianco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgari, D., Casati, P., Brusetti, L. et al. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J Microbiol. 47, 393–401 (2009). https://doi.org/10.1007/s12275-009-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0082-1

Keywords

Navigation