Skip to main content
Log in

Spin valve effect of NiFe/graphene/NiFe junctions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

When spins are injected through graphene layers from a transition metal ferromagnet, high spin polarization can be achieved. When detected by another ferromagnet, the spin-polarized current makes high- and low-resistance states in a ferromagnet/graphene/ferromagnet junction. Here, we report manifest spin valve effects from room temperature to 10 K in junctions comprising NiFe electrodes and an interlayer made of double-layer or single-layer graphene grown by chemical vapor deposition. We have found that the spin valve effect is stronger with double-layer graphene than with single-layer graphene. The ratio of relative magnetoresistance increases from 0.09% at room temperature to 0.14% at 10 K for single-layer graphene and from 0.27% at room temperature to 0.48% at 10 K for double-layer graphene. The spin valve effect is perceived to retain the spin-polarized transport in the vertical direction and the hysteretic nature of magnetoresistance provides the basic functionality of a memory device. We have also found that the junction resistance decreases monotonically as temperature is lowered and the current-voltage characteristics show linear behaviour. These results revealed that a graphene interlayer works not as a tunnel barrier but rather as a conducting thin film between two NiFe electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.

    Article  CAS  Google Scholar 

  2. Tran, T. L. A.; Le, T. Q.; Sanderink, J. G. M.; van der Wiel, W. G.; de Jong, M. P. The multistep tunneling analogue of conductivity mismatch in organic spin valves. Adv. Funct. Mater. 2012, 22, 1180–1189.

    Article  CAS  Google Scholar 

  3. Kirwan, D. F.; de Menezes, V. M.; Rocha, C. G.; Costa, A. T.; Muniz, R. B.; Fagan, S. B.; Ferreira, M. S. Enhanced spin-valve effect in magnetically doped carbon nanotubes. Carbon 2009, 47, 2533–2537.

    Article  CAS  Google Scholar 

  4. Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.

    Article  CAS  Google Scholar 

  5. Karpan, V. M.; Khomyakov, P. A.; Starikov, A. A.; Giovannetti, G.; Zwierzycki, M.; Talanana, M.; Brocks, G.; van den Brink, J.; Kelly, P. J. Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys. Rev. B 2008, 78, 195419.

    Article  Google Scholar 

  6. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  7. Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

    Article  CAS  Google Scholar 

  8. Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412.

    Article  CAS  Google Scholar 

  9. Nishioka, M.; Goldman, A. M. Spin transport through multilayer graphene. Appl. Phys. Lett. 2007, 90, 252505.

    Article  Google Scholar 

  10. Cho, S. J.; Chen, Y. F.; Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 2007, 91, 123105.

    Article  Google Scholar 

  11. Goto, H.; Kanda, A.; Sato, T.; Tanaka, S.; Ootuka, Y.; Odaka, S.; Miyazaki, H. T.; Tsukagoshi, K.; Aoyagi, Y. Gate control of spin transport in multilayer graphene. Appl. Phys. Lett. 2008, 92, 212110.

    Article  Google Scholar 

  12. Wang, W. H.; Pi, K.; Li, Y.; Chiang, Y. F.; Wei, P.; Shi, J.; Kawakami, R. K. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 2008, 77, 020402.

    Article  Google Scholar 

  13. Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C. B.; Epstein, A. J. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 2010, 9, 638–642.

    Article  CAS  Google Scholar 

  14. Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 2011, 10, 39–44.

    Article  CAS  Google Scholar 

  15. Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 2012, 11, 289–293.

    Article  CAS  Google Scholar 

  16. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    Article  CAS  Google Scholar 

  17. Cobas, E.; Friedman, A. L.; van’t Erve, O. M. J.; Robinson, J. T.; Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 2012, 12, 3000–3004.

    Article  CAS  Google Scholar 

  18. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  19. Xue, Y. Z.; Wu, B.; Guo, Y. L.; Huang, L. P.; Jiang, L.; Chen, J. Y.; Geng, D. C.; Liu, Y. Q.; Hu, W. P.; Yu, G. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208–1214.

    Article  CAS  Google Scholar 

  20. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  21. Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.

    Article  CAS  Google Scholar 

  22. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  CAS  Google Scholar 

  23. Mohiuddin, T. M. G.; Hill, E. W.; Elias, D.; Zhukov, A. A.; Novoselov, K. S.; Geim, A. K. Graphene in multilayered CPP spin valves. IEEE T. Magn. 2008, 44, 2624–2627.

    Article  CAS  Google Scholar 

  24. Akerman, J. J.; Roshchin, I. V.; Slaughter, J. M.; Dave, R. W.; Schuller, I. K. Origin of temperature dependence in tunneling magnetoresistance. Europhys. Lett. 2003, 63, 104–110.

    Article  Google Scholar 

  25. Shang, C. H.; Nowak, J.; Jansen, R.; Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 1998, 58, R2917–R2920.

    Article  CAS  Google Scholar 

  26. Parkin, S.; Kaiser, C.; Panchula, A.; Rice, P.; Huges, B.; Samant, M.; Yang, S. H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghwa Eom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M.Z., Iqbal, M.W., Lee, J.H. et al. Spin valve effect of NiFe/graphene/NiFe junctions. Nano Res. 6, 373–380 (2013). https://doi.org/10.1007/s12274-013-0314-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0314-x

Keywords

Navigation