Skip to main content
Log in

Upregulation of bone-like extracellular matrix expression in human dental pulp stem cells by mechanical strain

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

There are many different types of periodontal diseases. One such disease causes a defect of alveolar bone that is considered serious. Hence, researchers have examined potential treatments for this type of disease using tissue engineering techniques. Periodontal tissues are exposed to mechanical stress caused by occlusion and mastication, and both the cells and extracellular matrix in these tissues undergo architectural modifications to compensate for the applied stress. Therefore, in this study we analyzed the effect of mechanical tension on the osteogenesis of human dental pulp stem cells (DPSCs). To identify osteogenesis induced by mechanical stress in dental pulp, we examined the effects of tension on DPSCs. We evaluated the effects of mechanical stimuli on the osteogenesis of human dental pulp cells grown on silk scaffolds subjected to 10% strain using a bioreactor. The tension was applied with 0.2 Hz over the course of 5 days and was then continuously applied for 10 more days. We evaluated cell differentiation by RT-PCR, Western blotting and immunohistochemistry. Applying 10% tension to the culture resulted in increases in collagen type I, fibronectin, osteoprotegerin, and bone sialoprotein expression and decreases in a-smooth muscle actin expression. These data suggest that mechanical stimulation promotes osteogenesis in DPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer, R. and J. P. Vacanti (1993) Tissue engineering. Science 260: 920–926.

    Article  CAS  Google Scholar 

  2. Griffith, L. G. and G. Naughton (2002) Tissue engineering-current challenges and expanding opportunities. Science 295: 1009–1114.

    Article  CAS  Google Scholar 

  3. Jo, I. H., J.M. Le, H. Suh, and H. B. Kim (2007) Bone tissue engineering using marrow stromal cells. Biotechnol. Bioproc. Eng. 12: 48–53.

    Article  CAS  Google Scholar 

  4. Hwang, Y. S., Y. Y. Kang, and A. Mantalaris (2007) Directing embryonic stem cell differentiation into osteogenic/chondrogenic lineage in vitro. Biotechnol. Bioproc. Eng. 12: 15–21.

    Article  CAS  Google Scholar 

  5. Yoo, B. Y., Y. H. Shin, H. H. Yoon, Y. J. Kim, K. Y. Song, S. J. Hwang, and J. K. Park (2007) Improved isolation of outer root sheath cells from human hair follicles and their proliferation behavior under serum-free condition. Biotechnol. Bioproc. Eng. 12: 54–59.

    Article  CAS  Google Scholar 

  6. Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64: 295–312.

    Article  CAS  Google Scholar 

  7. Haynesworth, S. E., J. Goshima, V.M. Goldberg, and A. I. Caplan (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13: 81–88.

    Article  CAS  Google Scholar 

  8. Bruder, S. P., N. Jaiswal, N. S. Ricalton, J. D. Mosca, K. H. Kraus, and S. Kadiyala (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin. Orthop. 355: 247–256.

    Google Scholar 

  9. Kadiyala, S., R. G. Young, M. A. Thiede, and S. P. Bruder (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6: 125–134.

    Article  CAS  Google Scholar 

  10. Holtorf, H. L., J. A. Jansen, and A. G. Mikos (2006) Modulation of cell differentiation in bone tissue engineering constructs cultured in a bioreactor. Adv. Exp. Med. Biol. 585: 225–241.

    Article  Google Scholar 

  11. Vassilis, K., M. Lorenz, H. Sandra, M. Ajay, V. Vladimir, and K. David (2004) Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. 71: 528–537.

    Google Scholar 

  12. Andrades, J. A., B. Han, J. Becerra, N. Sorgente, F. L. Hall, and M. E. Nimni (1999) A recombinant human TGF-β1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp. Cell. Res. 250: 485–498.

    Article  CAS  Google Scholar 

  13. Fu, Y. C., H. Nie, M. Ho, C. K. Wang, and C. H. Wang (2008) Optimized bone regeneration based on sustained release from Three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol. Bioeng. 99: 996–1006.

    Article  CAS  Google Scholar 

  14. Liu, L. S., A. Y. Thompson, M. A. Heidaran, J.W. Poser, and R. C. Spiro (1999) An osteoconductive collagen/hyaluronate matrix for bone regeneration. Biomaterials 20: 1097–1108.

    Article  CAS  Google Scholar 

  15. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. MacKenna, F. J. Villarreal, and A. D. McCulloch (1996) An equibiaxial strain system for cultured cells. Am. J. Physiol. 271: 1400–1408.

    Google Scholar 

  16. Terracio, L., A. Tingstrom, W. H. Peters, and T. K. Borg (1990) A potential role for mechanical stimulation in cardiac development. Ann. N. Y. Acad. Sci. 588: 48–60.

    Article  CAS  Google Scholar 

  17. Vandenburgh, H. H. and P. Karlisch (1989) Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev. Biol. 25: 607–616.

    Article  CAS  Google Scholar 

  18. van Griensven, M., J. Zeichen, M. Skutek, T. Barkhausen, C. Krettek, and U. Bosch (2003) Cyclic mechanical strain induces NO production in human patellar tendon fibroblasts: A possible role for remodelling and pathological transformation. Exp. Toxi col. Pathol. 54: 335–338.

    Article  Google Scholar 

  19. Toyoda, T., H. Matsumoto, K. Fujikawa, S. Saito, and K. Inoue (1998) Tensile load and the metabolism of anterior cruciate ligament cells. Clin. Orthop. Relat. Res. 353: 247–255.

    Article  Google Scholar 

  20. Karl, H. K. and K. H. Carl (2006) Mesenchymal stem cells and bone regeneration. Vet. Surg. 35: 232–242.

    Article  Google Scholar 

  21. Han, M. J., Y. K. Seo, H. H. Yoon, K. Y. Song, and J. K. Park (2008) Effect of mechanical tension on the human dental pulp cells. Biotechnol. Bioproc. Eng. 13: 410–417.

    Article  CAS  Google Scholar 

  22. Jagodzinski, M., M. Drescher, J. Zeichen, S. Hankemeier, C. Krettek, U. Bosch, and M. van Griensven (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur. Cell Mater. 16: 35–41.

    Google Scholar 

  23. Neidlinger-Wilke, C., E. S. Grood, J. H. C. Wang, R. A. Brand, and L. Claes (2001) Cell alignment is induced by cyclic changes in cell length: Studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19: 286–293.

    Article  CAS  Google Scholar 

  24. Wang, H., W. Ip, R. Boissy, and E. S. Grood (1995) Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J. Biomech. 28: 1543–1552.

    Article  CAS  Google Scholar 

  25. Bhatt, K. A., E. I. Chang, S.M. Warren, S. E. Lin, N. Bastidas, S. Ghali, A. Thibboneir, J. M. Capla, J. G. McCarthy, and G. C. Gurtner (2007) Uniaxial mechanical strain: An in vitro correlate to distraction osteogenesis. J. Surg. Res. 143: 329–336.

    Google Scholar 

  26. Abbott, A. (2003) Cell culture: Biology’s new dimension. Nature 424:870–872.

    Article  CAS  Google Scholar 

  27. Hutmacher, D.W. (2001) Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12: 107–124.

    Article  CAS  Google Scholar 

  28. Schmeichel, K. L. and M. J. Bissell (2003) Modeling tissue-specific signaling and organ function in three dimensions. J. Cell Sci. 116: 2377–2388.

    Article  CAS  Google Scholar 

  29. Zahir, N. and V. M. Weaver (2004) Death in the third dimension: Apoptosis regulation and tissue architecture. Curr. Opin. Genet. Dev. 14: 71–80.

    Article  CAS  Google Scholar 

  30. Martin, I., D. Wendt, and M. Heberer (2004) The role of bioreactors in tissue engineering. Trends Biotechnol. 22: 80–86.

    Article  CAS  Google Scholar 

  31. Kale, S., S. Biermann, C. Edwards, C. Tarnowski, M. Morris, and M.W. Long (2000) Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotechnol. 18: 954–958.

    Article  CAS  Google Scholar 

  32. Ferrera, D., S. Poggi, C. Biassoni, G. R. Dickson, S. Astigiano, O. Barbieri, A. Favre, A. T. Franzi, A. Strangio, A. Federici, and P. Manduca (2002) Three-dimensional cultures of normal human osteoblasts: Proliferation and differentiation potential in vitro and upon ectopic implantation in nude mice. Bone 30: 718–725.

    Article  CAS  Google Scholar 

  33. Tallheden, T., C. Karlsson, A. Brunner, J. Van Der Lee, R. Hagg, R. Tommasini, and A. Lindahl (2004) Gene expression during redifferentiation of human articular chondrocytes. Osteoarthritis Cartilage 12: 525–535.

    Article  Google Scholar 

  34. Butler, D. L., S. A. Goldstein, and F. Guilak (2000) Functional tissue engineering: The role of biomechanics. J. Biomech. Eng. 122: 570–575.

    Article  CAS  Google Scholar 

  35. Mauney, J. R., S. Sjostorm, J. Blumberg, R. Horan, J. P. O’Leary, G. Vunjak-Novakovic, V. Volloch, and D. L. Kaplan (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif. Tissue Int. 74: 458–468.

    Article  CAS  Google Scholar 

  36. Bancroft, G. N., V. I. Sikavitsas, D. J. van den, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. USA. 99: 12600–12605.

    Article  CAS  Google Scholar 

  37. Howard, P. S., U. Kucich, R. Taliwal, and J.M. Korostoff (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J. Periodontal Res. 33: 500–508.

    Article  CAS  Google Scholar 

  38. Kanzaki, H., M. Chiba, A. Sato, A. Miyagawa, K. Arai, S. Nukatsuka, and H. Mitani (2006) Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J. Dent. Res. 85: 457–462.

    Article  CAS  Google Scholar 

  39. Vacanti, J. P. and R. Langer (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354: 32–34.

    Article  Google Scholar 

  40. Rose, F. R. and R. O. Oreffo (2002) Bone tissue engineering: hope vs. hype. Biochem. Biophys. Res. Commun. 292: 1–7.

    Article  CAS  Google Scholar 

  41. Rikli, D. A., P. Regazzoni, and S. M. Perren (2002) Is there a need for resorbable implants or bone substitutes?. Injury 33: 2–3.

    Article  Google Scholar 

  42. Marolt, D., A. Augst, L. E. Freed, C. Vepari, R. Fajardo, N. Patel, M. Gray, M. Farley, D. Kaplan, and G. Vunjak-Novakovic (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27: 6138–6149.

    Article  CAS  Google Scholar 

  43. Pavlin, D. and J. Gluhak-Heinrich (2001) Effect of mechanical loading on periodontal cells. Crit. Rev. Oral Biol. Med. 12: 414–424.

    Article  CAS  Google Scholar 

  44. Reitan, K. (1967) Clinical, and histologic observations on tooth movement during and after orthodontic treatment. Am. J. Orthod. 53: 721–745.

    Article  CAS  Google Scholar 

  45. Reitan, K. (1969) Principles of retention and avoidance of posttreatment relapse. Am. J. Orthod. 55: 776–790.

    Article  CAS  Google Scholar 

  46. Reitan, K. (1970) Evaluation of orthodontic forces as related to histologic and mechanical factors. SSO. Schweiz. Monatsschr. Zahnheilkd. 80: 579–596.

    CAS  Google Scholar 

  47. Gronthos, S., M. Mankani, J. Brahim, P. G. Robey, and S. Shi (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 97: 13625–13630.

    Article  CAS  Google Scholar 

  48. About, I., M. J. Bottero, P. Denato de, J. Camps, J. C. Franquin, and T. A. Mitsiadis (2000) Human dentin production in vitro. Exp. Cell. Res. 258: 33–41.

    Article  CAS  Google Scholar 

  49. Tsukamoto, Y., S. Fukutani, T. Shin-çIke, T. Kubota, S. Sato, Y. Suzuki, and M. Mori (1992) Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Arch. Oral. Biol. 37: 1045–1055.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Keug Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, MJ., Seo, YK., Yoon, HH. et al. Upregulation of bone-like extracellular matrix expression in human dental pulp stem cells by mechanical strain. Biotechnol Bioproc E 15, 572–579 (2010). https://doi.org/10.1007/s12257-009-0102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0102-3

Keywords

Navigation