Skip to main content
Log in

An assessment of emerging molecular farming activities based on patent analysis (2002∼2006)

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The products of Plant Molecular Farming are recombinant proteins or their metabolic products. In this study, patent data was employed to assess industrial trend in the research and innovation process of Plant Molecular Farming within national and international context. The US Patent and Trade Organization (USPTO), the European Patent Office (EPO) issued a total of 585 patents covering Plant Molecular Farming from 2002 through 2006. By nationality, US inventors predominated as recipients of PMF patents, followed by Germany, Denmark, and Japan. The PMF patents were catagorized in five major areas of research namely pharmaceutical and nutraceuticals with 170 patents (31%) and plant expression tools and methods for alternative production systems with 169 patents (29%) were the dominating patent applications, followed by 102 patent claims associated with antibodies (17%), 71 patents of industrial molecules (12%), 48 patents of vaccines (8%), and finally 18 patents related to post-translational protein glycosylation (3%). The greatest proportion of patentees was of US origin (52%), and PMF associated patenting activities at the USPTO and EPO were dominated with 67% by private organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drossard, J. (2004) Downstream processing of plantderived recombinant therapeutic proteins. pp. 217–230. In: R. Fischer and S. Schillberg (eds.). Molecular Farming. Wiley-VCH, Weinheim, Germany.

    Chapter  Google Scholar 

  2. Foltz, J., B. Barham, and K. Kim (2000) Universities and agricultural biotechnology patents production. Agribusiness 16: 82–95.

    Article  Google Scholar 

  3. Joly, P. B. and M. A. de Looze (1996) An analysis of innovation strategies and industrial differentiation through patent applications: the case of plant biotechnology. Res. Policy 25: 1027–1046.

    Article  Google Scholar 

  4. Science-technology Linkages in an Emerging Research Platform: The Case of Conbinatorial Chemistry and Biology. Electronic Working Paper No. 37. http://ideas.repec.org/p/dgr/umamer/1999020.html.

  5. McMillan, G. S., F. Narin, and D. L. Deeds (2000) An analysis of the critical role of public science in innovation: the case of biotechnology. Res. Policy 29: 1–8.

    Article  Google Scholar 

  6. Karki, M. M. (1997) Patent citation analysis: A policy analysis tool. World Pat. Inf. 19: 269–272.

    Article  Google Scholar 

  7. Oppenheim, C. (2000) Do patent citations count? pp. 405–432. In: B. Cronin and H. B. Atkins (eds.). The Web of Knowledge. Information Today, Medford, NJ, USA.

    Google Scholar 

  8. Daim, T. U., G. Rueda, H. Martin, and P. Gerdsri (2006) Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technol. Forecast. Soc. Change 73: 981–1012.

    Article  Google Scholar 

  9. Liu, S. J. and J. Shyu (1997) Strategic planning for technology development with patent analysis. Int. J. Technol. Manage. 13: 661–680.

    Article  CAS  Google Scholar 

  10. Williamson, A. R. (2001) Gene patents: socially acceptable monopolies or an unnecessary hindrance to research? Trends Genet. 17: 670–673.

    Article  CAS  Google Scholar 

  11. Chau, M., Z. Huang, J. Qin, Y. Zhou, and H. Chen (2006) Building a scientific knowledge web portal: The NanoPort experience. Decis. Support Syst. 42: 1216–1238.

    Article  Google Scholar 

  12. Caulfield, T. and B. von Tigerstrom (2006) Gene patents, health care policy and licensing schemes. Trends Biotechnol. 24: 251–254.

    Article  CAS  Google Scholar 

  13. OECD (2006) Guidelines for the Licensing of Genetic Inventions (http://www.oecd.org/dataoecd/39/38/36198812.pdf).

  14. OECD Compendium patent statistics (2003) http:// www.oecd.org/sti/ipr-statistics.

  15. Beyond borders: A Global Perspective. The Ernst & Young Global Health Sciences. Biotechnology Report. http://www.ey.com/global/content.nsf/International/Biotechnology_Library_Beyond_Borders_2004.

  16. Primer: Genome and Generic Research, Patent Protection and 21st Century Medicine. BIO Innovation Report. http://www.bio.org.

  17. Vain, P. (2006) Global trends in plant transgenic science and technology (1973–2003). Trends Biotechnol. 24: 206–211.

    Article  CAS  Google Scholar 

  18. Lane, D. P. (2002) Mind the gap. Trends Cell Biol. 12: 541–542.

    Article  Google Scholar 

  19. Ramani, S. V. and M. A. de Looze (2002) Country-specific characteristics of patent applications in France, Germany and the UK in the biotechnology sectors. Technol. Anal. Strateg. Manage. 14: 457–480.

    Article  Google Scholar 

  20. Baudry, M. and B. Dumont (2006) Comparing firms’ triadic patent applications across countries: Is there a gap in terms of R&D effort or a gap in terms of performances? Res. Policy 35: 324–342.

    Article  Google Scholar 

  21. Lawrence, S. (2006) Biotech patenting upturn. Nat. Biotechnol. 24: 1190.

    Article  CAS  Google Scholar 

  22. http://www.nhgri.nih.gov.

  23. Lawrence, S. (2004) Patent drop reveals pressures on industry. Nat. Biotechnol. 22: 930–931.

    Article  CAS  Google Scholar 

  24. Arcand, F. and P. Arnison (2005) Development of Novel Protein-Production Systems and Economic Opportunities & Regulatory Challenges for Canada. http://www.cpmp2005.org/Plant-factories.aspx.

  25. Ramani, S. V. (2002) Who is interested in biotech? R&D strategies, knowledge base and market sales of Indian biopharmaceutical firms. Res. Policy 31: 381–398.

    Article  Google Scholar 

  26. http://www.gmo-safety.eu.

  27. Aggarwal, S., V. Gupta, and S. Bagchi-Sen (2006) Insights into US public biotech sector using patenting trends. Nat. Biotechnol. 24: 643–651.

    Article  CAS  Google Scholar 

  28. Grandjean, N., B. Charpiot, C. A. Pena, and M. C. Peitsch (2005) Competitive intelligence and patent analysis in drug discovery Mining the competitive knowledge bases and patents. Drug Discov. Today: Technologies 2: 211–215.

    Article  Google Scholar 

  29. Torphy, T. J. (2002) Monoclonal antibodies: boundless potential, daunting challenges. Curr. Opin. Biotechnol. 13: 589–591.

    Article  CAS  Google Scholar 

  30. Farid, S. S. (2007) Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B 848: 8–18.

    Article  CAS  Google Scholar 

  31. Ma, J. K. C., R. Chikwamba, P. Sparrow, R. Fischer, R. Mahoney, and R. M. Twyman (2005) Plant-derived pharmaceutical — the road forward. Trends Plant Sci. 10: 580–585.

    Article  CAS  Google Scholar 

  32. Blueprinting for the Development of Plant Derived Vaccines for the Poor in Developing Countries. http://www.biodesign.asu.edu.

  33. Yusibov, V., D. C. Hooper, S. V. Spitsin, N. Fleysh, R. B. Kean, T. Mikheeva, D. Deka, A. Karasev, S. Cox, J. Randall, and H. Koprowski (2002) Expression in plants and immunogenecity of plant virus-based experimental rabies vaccine. Vaccine 20: 3155–3164.

    Article  CAS  Google Scholar 

  34. Ma, J. K., P. M. Drake, and P. Christou (2003) The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4: 794–805.

    Article  CAS  Google Scholar 

  35. Tacket, C. O. (2005) Plant-derived vaccines against diarrheal diseases. Vaccine 23: 1866–1869.

    Article  CAS  Google Scholar 

  36. http://www.thepoultrysite.com.

  37. Commandeur, U., R. M. Twyman, and R. Fischer (2003) The biosafety of molecular farming in plants. AgBiotech Net 5: 1–9.

    Google Scholar 

  38. Horn, M. E., S. L. Woodard, and J. A. Howard (2004) Plant molecular farming: Systems and products. Plant Cell Rep. 22: 711–720.

    Article  CAS  Google Scholar 

  39. http://www.plantpharma.org.

  40. Hood, E. E. and J. A. Howard (2002) Plants as Factories for Protein Production. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  41. Woodard, S. L., J. M. Mayor, M. R. Bailey, D. K. Barker, R. T. Love, J. R. Lane, D. E. Delaney, J. M. McComas-Wagner, H. D. Mallubhotla, E. E. Hood, L. J. Gangott, S. E. Tichy, and J. A. Howard (2003) Maize-derived bovine trypsin: Characterization of the first large-scale, commercial protein from transgenic plants. Biotechnol. Appl. Biochem. 38: 123–130.

    Article  CAS  Google Scholar 

  42. Chargelegue, N. D., P. M. W. Drake, P. Obregon, and J. K. Ma (2005) Production of secretory IgA in transgenic plants. pp. 159–169. In: R. Fischer and S. Schillberg (eds.). Molecular Farming: Plant-Made Pharmaceuticals and Technical Proteins. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pervin Basaran.

Additional information

Disclaimer: The views expressed in this study do not necessarily reflect those of the European Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basaran, P., Rodriguez-Cerezo, E. An assessment of emerging molecular farming activities based on patent analysis (2002∼2006). Biotechnol Bioproc E 13, 304–312 (2008). https://doi.org/10.1007/s12257-007-0092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0092-y

Keywords

Navigation