Skip to main content
Log in

Sampling-Design Effects on Properties of Species-Area Relationships – A Case Study from Estonian Dry Grassland Communities

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Despite widespread use of species-area relationships (SARs), dispute remains over the most representative SAR model. Using data of small-scale SARs of Estonian dry grassland communities, we address three questions: (1) Which model describes these SARs best when known artifacts are excluded? (2) How do deviating sampling procedures (marginal instead of central position of the smaller plots in relation to the largest plot; single values instead of average values; randomly located subplots instead of nested subplots) influence the properties of the SARs? (3) Are those effects likely to bias the selection of the best model? Our general dataset consisted of 16 series of nested-plots (1 cm2–100 m2, any-part system), each of which comprised five series of subplots located in the four corners and the centre of the 100-m2 plot. Data for the three pairs of compared sampling designs were generated from this dataset by subsampling. Five function types (power, quadratic power, logarithmic, Michaelis-Menten, Lomolino) were fitted with non-linear regression. In some of the communities, we found extremely high species densities (including bryophytes and lichens), namely up to eight species in 1 cm2 and up to 140 species in 100 m2, which appear to be the highest documented values on these scales. For SARs constructed from nested-plot average-value data, the regular power function generally was the best model, closely followed by the quadratic power function, while the logarithmic and Michaelis-Menten functions performed poorly throughout. However, the relative fit of the latter two models increased significantly relative to the respective best model when the single-value or random-sampling method was applied, however, the power function normally remained far superior. These results confirm the hypothesis that both single-value and random-sampling approaches cause artifacts by increasing stochasticity in the data, which can lead to the selection of inappropriate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrhenius O (1920) Distribution of the species over the area. Meddeland K Vetenskapsakad Nobelinst 4(7):1–6

    CAS  Google Scholar 

  • Barkman JJ (1989) A critical evaluation of minimum area concepts. Vegetatio 85:89–104

    Article  Google Scholar 

  • Boch S, Dengler J (2006) Floristische und ökologische Charakterisierung sowie Phytodiversität der Trockenrasen auf der Insel Saaremaa (Estland). In Bültmann H, Fartmann T, Hasse T (eds) Trockenrasen auf unterschiedlichen Betrachtungsebenen – Berichte einer Tagung vom 26.–28. August in Münster. Arbeiten Inst Landschaftsökol Münster 15, pp 55–71

  • Connor EF, McCoy ED (2001) Species-area relationships. In Levin SA (ed) Encyclopedia of biodiversity 5. Academic Press, San Diego, pp 397–411

    Google Scholar 

  • Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868

    Article  PubMed  CAS  Google Scholar 

  • Dengler J (2003) Entwicklung und Bewertung neuer Ansätze in der Pflanzensoziologie unter besonderer Berücksichtigung der Vegetationsklassifikation. Arch Naturwiss Diss 14:1–297

    Google Scholar 

  • Dengler J (2005) Zwischen Estland und Portugal – Gemeinsamkeiten und Unterschiede der Phytodiversitätsmuster europäischer Trockenrasen. Tuexenia 25:387–405

    Google Scholar 

  • Dengler J (2006) Variabilität von Artendichte und Artenzusammensetzung auf unterschiedlichen räumlichen Skalenebenen – Exemplarische Untersuchungen aus Trockenrasen und Konsequenzen für das Probedesign von Biodiversitätsuntersuchungen. In Bültmann H, Fartmann T, Hasse T (eds) Trockenrasen auf unterschiedlichen Betrachtungsebenen – Berichte einer Tagung vom 26.–28. August in Münster. Arbeiten Inst Landschaftsökol Münster 15, pp 73–81

  • Dengler J (2008) Pitfalls in small-scale species-area sampling and analysis. Folia Geobot 43(3):269–287

    Article  Google Scholar 

  • Dengler J (in press) Which function describes the species-area relationship best? A review and empirical evaluation. J Biogeogr

  • Dengler J, Bedall P, Bruchmann I, Hoeft I, Lang A (2004) Artenzahl-Areal-Beziehungen in uckermärkischen Trockenrasen unter Berücksichtigung von Kleinstflächen – eine neue Methode und erste Ergebnisse. Kieler Not Pflanzenk Schleswig-Holstein Hamburg 32:20–25

    Google Scholar 

  • Desmet P, Cowling R (2004) Using the species-area relationship to set baseline targets for conservation. Ecol Soc 9(2): Article 1:1–23, available at: http://www.ecologyandsociety.org/vol9/iss2/art11

    Google Scholar 

  • Dolnik C (2003) Artenzahl-Areal-Beziehungen von Wald- und Offenlandgesellschaften – Ein Beitrag zur Erfassung der botanischen Artenvielfalt unter besonderer Berücksichtigung der Flechten und Moose am Beispiel des Nationalparks Kurischen Nehrung (Russland). Mitt Arbeitsgem Geobot Schleswig-Holstein und Hamburg 62:1–183

    Google Scholar 

  • Dolnik C, Breuer M (2008) Scale dependency in the species-area relationship of plant communities. Folia Geobot 43(3):305–318

    Article  Google Scholar 

  • Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol Lett 9:215–227

    Article  PubMed  Google Scholar 

  • Fridley JD, Peet RK, Wentworth TR, White PS (2005) Connecting fine- and broad-scale species-area relationships of southeastern U. S. flora. Ecology 86:1172–1177

    Article  Google Scholar 

  • Gleason HA (1922) On the relation between species and area. Ecology 3:158–162

    Article  Google Scholar 

  • He F, Legendre P (1996) On species-area relations. Amer Naturalist 148:719–737

    Article  Google Scholar 

  • Hobohm C (1998) Pflanzensoziologie und die Erforschung der Artenvielfalt – Überarbeitete und erweiterte Fassung der an der Universität Lüneburg eingereichten und angenommenen Habilitationsschrift. Arch Naturwiss Diss 5:1–231

    Google Scholar 

  • Hopkins B (1955) The species-area relation of plant communities. J Ecol 43:409–426

    Article  Google Scholar 

  • Kier G, Mutke J, Dinerstein E, Ricketts T, Küper W, Kreft H, Barthlott W (2005) Global patterns of plant diversity and floristic knowledge. J Biogeogr 32:1107–1116

    Article  Google Scholar 

  • Klimeš L (1997) Species richness of grasslands in the Bílé Karpaty Mts. [in Czech, with English summary]. Sborn Přír Klubu Uh Hradišti 2:31–42

    Google Scholar 

  • Löbel S (2002) Trockenrasen auf Öland: Syntaxonomie – Ökologie – Biodiversität. Diploma thesis, Institute of Ecology and Environmental Chemistry, University of Lüneburg, Lüneburg

  • Löbel S, Dengler J, Hobohm C (2004) Beziehungen zwischen der Artenvielfalt von Gefäßpflanzen, Moosen und Flechten in Trockenrasen der Insel Öland (Schweden). Kieler Not Pflanzenk Schleswig-Holstein Hamburg 32:9–13

    Google Scholar 

  • Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species-area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Palmer MW, McGlinn DJ, Fridley JD (2008) Artifacts and artifictions in biodiversity research. Folia Geobot 43(3):245–257

    Article  Google Scholar 

  • Peet RK, Wentworth TR, White PS (1998) A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63:262–274

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Rejmánek M, Rosén E (1992) Influence of colonizing shrubs on species-area relationships in alvar plant communities. J Veg Sci 3:625–630

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Scheiner SM (2003) Six types of species-area curves. Global Ecol Biogeogr 12:441–447

    Article  Google Scholar 

  • StatSoft, Inc. (2005) STATISTICA for Windows. Version 7.1. available at: http://www.statsoft.com

  • Stiles A, Scheiner SM (2007) Evaluation of species-area functions using Sonoran Desert plant data: not all species-area curves are power functions. Oikos 116:1930–1940

    Article  Google Scholar 

  • Stohlgren TJ (2007) Measuring plant diversity – lessons from the field. Oxford University Press, Oxford

    Google Scholar 

  • Stohlgren TJ, Falkner MB, Schell LD (1995) A Modified-Whittaker nested vegetation sampling method. Vegetatio 117:113–121

    Article  Google Scholar 

  • Tjørve E (2003) Shapes and functions of species-area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Turner WR, Tjørve E (2005) Scale-dependence in species-area relationships. Ecography 28:721–730

    Article  Google Scholar 

  • van der Maarel E (1997) Biodiversity: from babel to biosphere management. Special Features in Biosystematics and Biodiversity 2. Opulus Press, Uppsala

  • Walter H, Breckle S-W (1986) Ökologie der Erde – Band 3: Spezielle Ökologie der Gemäßigten und Arktischen Zonen Euro-Nordasiens. Fischer, Stuttgart

  • Williams CB (1943) Area and number of species. Nature 152:264–267

    Article  Google Scholar 

  • Williamson M (1988) Relationship of species number to area, distance and other variables. In Myers AA, Giller PS (eds) Analytical biogeography: An integrated approach to the study of animal and plant distributions. Chapman & Hall, London, pp 91–115

    Google Scholar 

  • Williamson M, Gaston KJ, Lonsdale WM (2001) The species-area relationship does not have an asymptote!. J Biogeogr 28:827–830

    Article  Google Scholar 

  • Williamson M, Gaston KJ, Lonsdale WM (2002) An asymptote is an asymptote and not found in species-area relationships. J Biogeogr 29:1713–1713

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tomáš Herben for inviting this contribution, and him, two anonymous referees, and the colleagues from the plant ecological working groups at the University of Hamburg for constructive comments on earlier versions of this manuscript. Curtis Björk kindly improved the English usage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Dengler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dengler, J., Boch, S. Sampling-Design Effects on Properties of Species-Area Relationships – A Case Study from Estonian Dry Grassland Communities. Folia Geobot 43, 289–304 (2008). https://doi.org/10.1007/s12224-008-9018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-008-9018-5

Keywords

Navigation