Skip to main content
Log in

Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Optical fiber sensors based on stimulated Brillouin scattering have now clearly demonstrated their excellent capability for long-range distributed strain and temperature measurements. The fiber is used as sensing element, and a value for temperature and/or strain can be obtained from any point along the fiber. After explaining the principle and presenting the standard implementation, the latest developments in this class of sensors will be introduced, such as the possibility to measure with a spatial resolution of 10 cm and below while preserving the full accuracy on the determination of temperature and strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horiguchi T, Tateda M. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Optics Letters, 1989, 14(8): 408–410

    Article  Google Scholar 

  2. Horiguchi T, Kurashima T, Tateda M. A technique to measure distributed strain in optical fibers. IEEE Photonics Technology Letters, 1990, 2(5): 352–354

    Article  Google Scholar 

  3. Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Optics Letters, 1990, 15(18): 1038–1040

    Article  Google Scholar 

  4. Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photonics Technology Letters, 1989, 1(5): 107–108

    Article  Google Scholar 

  5. Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers. Journal of Lightwave Technology, 1997, 15(10): 1842–1851

    Article  Google Scholar 

  6. Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y. Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology, 1995, 13(7): 1296–1302

    Article  Google Scholar 

  7. Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification. Journal of the Optical Society of America B, 2005, 22(6): 1321–1324

    Article  Google Scholar 

  8. Bao X, Webb D J, Jackson D A. 32-km distributed temperature sensor based on Brillouin loss in an optical fiber. Optics Letters, 1993, 18(18): 1561–1563

    Article  Google Scholar 

  9. Nikles M, Thevenaz L, Robert P A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Optics Letters, 1996, 21(10): 758–760

    Article  Google Scholar 

  10. Thevenaz L, Nikles M, Fellay A, Facchini M, Robert P A. Applications of distributed Brillouin fiber sensing. In: Proceedings of International Conference on Applied Optical Metrology. Balatonfured: SPIE, 1998, 3407: 374–381

    Google Scholar 

  11. Van Deventer M O, Boot A J. Polarization properties of stimulated Brillouin scattering in single-mode fibers. Journal of Lightwave Technology, 1994, 12(4): 585–590

    Article  Google Scholar 

  12. Thevenaz L, Foaleng-Mafang S, Nikles M. Fast measurement of local PMD with high spatial resolution using stimulated Brillouin scattering. In: Proceedings of the 33rd European Conference on Optical Communication. 2007, 10.1.2

  13. Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation. IEICE Transactions on Electronics, 2000, E83-C(3): 405–412

    Google Scholar 

  14. Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique. IEEE Photonics Technology Letters, 2002, 14(2): 179–181

    Article  Google Scholar 

  15. Bao X, Brown A, DeMerchant M, Smith J. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses. Optics Letters, 1999, 24(8): 510–512

    Article  Google Scholar 

  16. Lecoeuche V, Webb D J, Pannell C N, Jackson D A. Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time. Optics Letters, 2000, 25(3): 156–158

    Article  Google Scholar 

  17. Brown A W, Colpitts B G, Brown K. Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution. Journal of Lightwave Technology, 2007, 25(1): 381–386

    Article  Google Scholar 

  18. Foaleng-Mafang S, Beugnot J C, Thevenaz L. Optimized configuration for high resolution distributed sensing using Brillouin echoes. In: Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh: SPIE, 2009, 7503: 75032C

    Google Scholar 

  19. Thevenaz L, Foaleng-Mafang S. Distributed fiber sensing using Brillouin echoes. In: Proceedings of the 19th International Conference on Optical Fibre Sensors. Perth: SPIE, 2008, 7004: 70043N

    Google Scholar 

  20. Thevenaz L, Beugnot J C. General analytical model for distributed Brillouin sensors with sub-meter spatial resolution. In: Proceedings of the 20th International Conference on Optical Fibre Sensors. Edinburgh: SPIE, 2009, 7503: 75036A

    Google Scholar 

  21. Li W, Bao X, Li Y, Chen L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Optics Express, 2008, 16(26): 21616–21625

    Article  Google Scholar 

  22. Song K Y, Zou W, He Z, Hotate K. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Optics Letters, 2008, 33(9): 926–928

    Article  Google Scholar 

  23. Dong Y, Bao X, Chen L. Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber. Optics Letters, 2009, 34(17): 2590–2592

    Article  Google Scholar 

  24. SongK Y, Zou W, He Z, Hotate K. Optical time-domain-measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber. Optics Letters, 2009, 34(9): 1381–1383

    Article  Google Scholar 

  25. Zou W, He Z, Song K Y, Hotate K. Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber. Optics Letters, 2009, 34(7): 1126–1128

    Article  Google Scholar 

  26. Song K Y, Chin S, Primerov N, Thevenaz L. Time-domain distributed sensor with 1 cm spatial resolution based on Brillouin dynamic gratings. In: Proceedings of the 20th International Conference on Optical Fibre Sensors. Edinburgh: SPIE, 2009, 7503: 75037V

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Thévenaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thévenaz, L. Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives. Front. Optoelectron. China 3, 13–21 (2010). https://doi.org/10.1007/s12200-009-0086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-009-0086-9

Keywords

Navigation