Skip to main content
Log in

Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Chinese hamster lung fibroblasts V79 cells were treated with heat stress for 4 weeks with short duration (15 min) heat shock every alternate day in culture. It was observed that Hsp 70 and the antioxidant enzyme MnSOD became overexpressed during the chronic heat stress period. Both p38 MAPK and Akt became phosphorylated by chronic heat stress exposure. Simultaneous exposure to SB203580, a potent and specific p38MAPK inhibitor drastically inhibited the phosphorylation of p38MAPK and Akt. Furthermore, exposure to SB203580 also blocked the increase in Hsp70 and MnSOD levels and the elevated SOD activity brought about by chronic heat stress. Heat shock factor 1 (HSF1) transcriptional activity and nuclear translocation of HSF1 were prominently augmented by chronic heat stress, and this amplification is markedly reduced by concomitant exposure to SB203580. Also, activations of p38MAPK and Akt and upregulations of Hsp70 and MnSOD were observed on exposure to heat shock for a single exposure of longer duration (40 min). siRNA against p38MAPK notably reduced Akt phosphorylation by single exposure to heat stress and drastically diminished the rise in Hsp70 and MnSOD levels. Similarly, siRNA against Akt also eliminated the augmentation in Hsp70 and MnSOD levels but p38MAPK levels remained unaffected. Heat stress produced reactive oxygen species (ROS) in V79 fibroblasts. N-acetyl cysteine blocked the increase in phosphorylation of p38MAPK, amplification of Hsp70, and MnSOD levels by heat stress. Therefore, we conclude that heat stress-activated p38MAPK which in turn activated Akt. Akt acted downstream of p38MAPK to increase Hsp70 and MnSOD levels.

Concise summary: Thermal injury of the skin over a long period of time has been associated with development of cancerous lesions. Also, in many cancers, the cytoprotective genes Hsp70 and MnSOD have been found to be overexpressed. Therefore, we considered it important to identify the signaling elements upstream of the upregulated survival genes in heat stress. We conclude that heat stress activated p38MAPK which in turn activated Akt. Akt mediated an augmentation in Hsp70 and MnSOD levels working downstream of p38MAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

Hsp:

Heat shock protein

MnSOD:

Manganese superoxide dismutase

HSF1:

Heat shock factor 1

NFKB:

Nuclear factor kappa B

CREB:

cAMP response element-binding protein

AP1:

Activator protein 1

MAPK:

Mitogen-activated protein kinase

References

  • Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes-integrating cell survival and death. J Biosci 32:595–610

    Article  CAS  PubMed  Google Scholar 

  • Aziz SA, Hussain KS, Khan NA, Mushtaq A, Kharadi MY, Bhat JR (1998) Profile of Kangari cancer: a prospective study. Burns 24:763–766

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Ciocca DR (2008) Heat Shock Proteins: Stress proteins with Janus-like properties in cancer. Int J Hypertherm 24:31–39

    Article  CAS  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer:chaperones of tumorigenesis. Trends Biochemic Sci 31:164–172

    Article  CAS  Google Scholar 

  • Chakraborty PK, Banerjee Mustafi S, Ganguly S, Chatterjee M, Raha S (2008a) Resveratrol induces apoptosis in K562 (Chronic myelogenous leukemia) cells by targeting a key survival protein Hsp70. Cancer Sc 99:1109–1116

    Article  CAS  Google Scholar 

  • Chakraborty PK, Banerjee Mustafi S, Raha S (2008b) Pro-survival effects of repetitive low-grade oxidative stress are inhibited by simultaneous exposure to Resveratrol. Pharmacol Res 58:281–289

    Article  CAS  PubMed  Google Scholar 

  • Cuenda A, Rousseau S (2007) p38 MAP-Kinases pathway regulation function and role in human diseases. Biochem Biophys Acta 1773:1358–1375

    Article  CAS  PubMed  Google Scholar 

  • Dorion S, Lambert H, Landry J (2002) Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J Biol Chem 277:30792–30797

    Article  CAS  PubMed  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Goligorsky MS (2001) The concept of cellular “fight-or-flight” reaction to stress. Am J Physiol Renal Physiol 280:F551–F561

    CAS  PubMed  Google Scholar 

  • Han J, Sun P (2007) The pathways to tumor suppression via route p38. Trends Biochemic Sc 32:364–371

    Article  CAS  Google Scholar 

  • Hu H, Luo ML, Du XL, Feng YB, Zhang Y, Shen XM, Xu X, Cai Y, Han YL, Wang MR (2007a) Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophageal squamous cell carcinomas. Chin Med J 120:2092–2098

    CAS  PubMed  Google Scholar 

  • Hu Y, Jin H, Du X, Xiao C, Luo D, Wang B, She R (2007b) Effects of chronic heat stress on immune responses of the foot-and-mouth disease DNA vaccination. DNA Cell Biol 26:619–626

    Article  CAS  PubMed  Google Scholar 

  • Ilangovan G, Venkatakrishnan CD, Bratasz A, Osinbowale S, Cardounel AJ, Zweier JL, Kuppusamy P (2006) Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac H9c2 cells. Am J Physiol Cell Physiol 290:313–324

    Article  Google Scholar 

  • Jiang B, Liang P, Zhang B, Huang X, Xio X (2008) Enhancement of PPAR-β activity by repetitive low-grade H2O2 stress protects human umbilical vein endothelial cells from subsequent oxidative stress-induced apoptosis. Free Radical Biol Med 46:555–563 doi:10.1016/j.freeradbiomed.2008.10.051

    Article  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1922

    Article  CAS  PubMed  Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J NatlCancer Inst 92:1564–1572

    Article  CAS  Google Scholar 

  • Kim HP, Wang X, Zhang J, Suh GY, Benjamin IJ, Ryter SW, Choi AM (2005a) Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38β MAPK and heat shock factor-1. J Immunol 175:2622–2629

    CAS  PubMed  Google Scholar 

  • Kim HS, Skurk C, Maatz H, Shiojima I, Ivashchenko Y, Yoon SW, Park YB, Walsh K (2005b) Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression. FASEB J 19:1042–1044

    CAS  PubMed  Google Scholar 

  • Kiningham KK, Cardozo ZA, Cook C, Cole MP, Stewart JC, Tassone M, Coleman MC, Spitz DR (2008) All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-κB. Free Radical Biol Med 44:1610–1616

    Article  CAS  Google Scholar 

  • Lu Q, Wen J, Zhang H (2007) Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult Sci 86:1059–1064

    CAS  PubMed  Google Scholar 

  • Maridonneau-Parini I, Clerc J, Polla BS (1988) Heat shock inhibits NADPH oxidase in human neutrophils. Biochem Biophys Res Commun 154:179–186

    Article  CAS  PubMed  Google Scholar 

  • Maridonneau-Parini I, Malawista SE, Stubbe H, Russo-Marie F, Polla BS (1993) Heat shock in human neutrophils: superoxide generation is inhibited by a mechanism distinct from heat-denaturation of NADPH oxidase and is protected by heat shock proteins in thermotolerant cells. J Cell Physiol 156:204–211

    Article  CAS  PubMed  Google Scholar 

  • Mattson D, Bradbury MC, Bisht KS, Curry HA, Spitz DR, Gius D (2004) Heat shock and the activation of AP-1and inhibition of NFҝB DNA binding activity. Possible role of intracellular redox status. Int J Hypertherm 20:224–233

    Article  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  Google Scholar 

  • Odongo NE, AlZahal O, Lindinger MI, Duffield TF, Valdes EV, Terrell SP, McBride BW (2006) Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs. J Anim Sci 84:447–455

    CAS  PubMed  Google Scholar 

  • Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Update 7:97–110

    Article  CAS  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  CAS  PubMed  Google Scholar 

  • Rafiee P, Theriot ME, Nelson VM, Heidemann J, Kanaa Y, Horowitz SA, Rogaczewski A, Johnson CP, Ali I, Shaker R, Binion DG (2006) Human esophageal microvascular endothelial cells respond to acidic pH stress by PI3K/AKT and p38 MAPK-regulated induction of Hsp70 and Hsp27. Am J Physiol Cell Physiol 291:931–945

    Article  Google Scholar 

  • Schimmel M, Bauer G (2002) Proapoptotic and redox state-related signaling of reactive oxygen species generated by transformed fibroblasts. Oncogene 21:5886–5896

    Article  CAS  PubMed  Google Scholar 

  • Sen P, Mukherjee S, Ray D, Raha S (2003) Involvement of the Akt signaling pathway with disease processes. Mol Cell Biochem 253:241–246

    Article  CAS  PubMed  Google Scholar 

  • Sen P, Chakraborty PK, Raha S (2005) p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability. FEBS Lett 579:4402–4406

    Article  CAS  PubMed  Google Scholar 

  • Shilo S, Pardo M, Aharoni-Simon M, Glibter S, Tirosh O (2008) Selenium supplementation increases liver MnSOD expression: molecular mechanism for hepato-protection. J Inorganic Biochem 102:110–118

    Article  CAS  Google Scholar 

  • Shin MH, Moon YJ, Seo JE, Lee Y, Kim KH, Chung JH (2008) Reactive oxygen species produced by NADH oxidase, Xanthine oxidase and mitochondrial electron transport system mediate heat shock- induced MMP-1 and MMP-9 expression. Free Radical Biol Med 44:635–645

    Article  CAS  Google Scholar 

  • Stathopoulou K, Gaitanaki C, Beis I (2006) Extracellular pH changes activate the p38-MAPK signalling pathway in the amphibian heart. J Exp Biol 209:1344–1354

    Article  CAS  PubMed  Google Scholar 

  • Tekin D, Xi L, Zhao T, Tejero-Taldo ML, Atluri S, Kukreja RC (2001) Mitogen-activated protein kinases mediate heat shock-induced delayed protection in mouse heart. Am J Physiol Heart Circ Physiol 281:H523–532

    CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Kaneko M, Tanaka S, Okuma Y, Nomura Y (1999) Possible involvement of p38MAP kinase in Hsp70 expression induced by hypoxia in rat primary astrocytes. Brain Res 823:226–230

    Article  CAS  PubMed  Google Scholar 

  • Vega ML, Huerta-Yepaz S, Garban H, Zazirehi A, Emmanouilides C, Bonavida B (2004) Rituximab inhibits p38MAPK activity in 2F7BNHL and decreases IL-10 transcription: pivotal role of p38MAPK in drug resistance. Oncogene 23:3530–3540

    Article  CAS  PubMed  Google Scholar 

  • Yamashita N, Hoshida S, Nishida M, Igarashi J, Taniguchi N, Tada M, Kuzuya T, Hori M (1997) Heat shock-induced manganese superoxide dismutase enhances the tolerance of cardiac myocytes to hypoxia–reoxygenation injury. J Mol Cell Cardiol 29:1805–1813

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Xu L, Drake VJ, Xie L, Oberley LW, Kregel KC (2003) Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation. FASEB J 17:2293–2295

    CAS  PubMed  Google Scholar 

  • Zhang J, Shen B, Lin A (2007) Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacologic Sci 28:286–295

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. Swasti Roy Choudhuri, Structural Genomics section of our institute for his excellent help and guidance with the confocal microscopy. Partial financial support from grant no. SR/SO/HS-23/2003 from Department of Science and Technology, Government of India is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Raha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee Mustafi, S., Chakraborty, P.K., Dey, R.S. et al. Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress and Chaperones 14, 579–589 (2009). https://doi.org/10.1007/s12192-009-0109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0109-x

Keywords

Navigation